

УДК 004.415
ББК 32.973.201
 Ч49

ДЕНДИ-КОД
Черняев Александр
ISBN 978-5-6051372-3-8

Коммит 5761c81
Липецк, 2025

Формат: 148×210 мм (A5)
Бумага: офсетная 80 г/м², печать цифровая
Шрифты: EB Garamond, JetBrains Mono
Тираж: 76 экз. | Заказ № 140574
Издательство: Полиграфия «Колор», ИП Москалёва Э. В.

Содержание
Предисловие 6 ...

Всё начинается с README 11 ..

Великий монолит 21 ...

Код как средство коммуникации 25 ...

Форматирование 31 ..

Код должен дышать 38 ...

Именование 43 ...

Магические значения 62 ..

Размер имеет значение 71 ..

Без лишних движений 78 ..

Ранний выход 95 ..

Управляющие конструкции 102 ...

Аргументы 112 ...

Обработка ошибок 121 ..

Комментарии 132 ...

Не бойся удалять код 138 ...

Тесты 143 ...

Играй по правилам 157 ..

Не отказывайтесь от будущего 162 ..

Второй пилот — не капитан 165 ...

Послесловие 174 ..

6

>_

Предисловие
Одна из трудностей, с которой мы сталкиваемся, — это поиск

кратких и содержательных выжимок без лишней воды. Часто при-
ходится выбирать между чтением громоздких книг по 500 стра-
ниц или бесконечным пролистыванием блогов, лент и статей в ин-
тернете. Это разочарование подтолкнуло меня к созданию сжа-
той, практической книги — о том, как писать понятный, опрят-
ный и уважающий коллег код. Всё — на конкретных примерах,
преимущественно с использованием PHP.

7

Тема качественного кода сложна и многогранна. Некоторые
её аспекты неизбежно вызывают споры и сводятся к вопросам
вкуса и личных предпочтений. Такие вопросы в книге опущены.
В центре внимания — конкретные, проверенные практикой прави-
ла, которые помогают писать опрятный на вид код.

Важно понимать, что темы чистого кода, архитектуры и объ-
ектно-ориентированного программирования — это по-настояще-
му глубокие области. Углубляться в них можно бесконечно. Одна-
ко в этой книге мы сознательно сосредотачиваемся на визуаль-
ной читаемости и внешней аккуратности кода. Почему? Потому
что именно с этого всё начинается.

Это как человек-денди: он входит в комнату — и ты сразу заме-
чаешь, что он ухожен, аккуратен, элегантен. Ты ещё не знаешь,
о чём он будет говорить, но уже понимаешь — перед тобой тот,
кто уважает себя и окружающих.

Так и код: даже если ты не вникал в его логику, по внешнему
виду видно, что автору не всё равно. Это уважение — к себе,
к коллеге, к команде.

Эта книга — о том, как сделать код чуть приятнее глазу.
И пусть это станет вашим первым шагом к более глубокому пони-
манию чистоты и структуры.

8

Для кого предназначена эта книга

Предполагается, что читателем книги в первую очередь ста-
нет специалист начального уровня, уже принимавший участие хо-
тя бы в одном коммерческом, личном или учебном проекте.
Но и опытные специалисты найдут здесь полезные идеи — осо-
бенно если их профессиональный путь был связан с одной коман-
дой, похожими задачами и устойчивыми привычками. Она помо-
жет лучше понять, как работать в команде и избегать раздраже-
ния у коллег. Для руководителей она будет полезна как пособие
для команды и как источник рекомендаций при ревью кода.

Если вы сомневаетесь, «Подходит ли это мне?», попробуйте от-
ветить на короткий чек-лист:

 Я имею базовые знания программирования.
 Я участвовал в создании хотя бы одного коммерческого,

личного или учебного проекта.
 Я хочу улучшить свой код и работать в команде более

эффективно.

9

Кому не подойдёт эта книга

Если вы ищете глубокое погружение в теорию объектно-ориен-
тированного программирования, архитектуру приложений или
сложные паттерны проектирования, возможно, вам стоит начать
с трудов Мартина Фаулера, Роберта Мартина, Стива Макконнел-
ла и других авторов.

Здесь вы не найдёте пространных рассуждений о том, почему
static — это зло, null — ошибка на миллиард долларов, или
как строго следовать принципам SOLID. Мы не будем явно обсуж-
дать coupling и cohesion, рассчитывать показатели maintainability
или разбирать уровни абстракций.

Вместо этого книга предлагает практические рекомендации,
основанные на существующих идеях и личном опыте, — чтобы по-
мочь вам писать понятный, последовательный и дружелюбный
к другим код в реальных проектах.

Как извлечь максимум из этой книги

Вы можете прочитать её залпом за вечер, но вряд ли это при-
несёт ощутимую пользу. Гораздо эффективнее — читать по од-
ной-две главы за раз. Применять на практике. Обсуждать с колле-
гами. Спорить. Переделывать старый код. И главное — почувство-
вать разницу.

Если спор зашёл в тупик или у вас возник вопрос по содержа-
нию книги, пожалуйста, создайте issue в GitHub-репозитории:
https://github.com/tabuna/dandy-code

https://github.com/tabuna/dandy-code

10

Искренне надеюсь, что чтение будет для вас интересным и по-
лезным — и что эта книга поможет строить приложения проще,
чище и эффективнее. Спасибо, что читаете.

Рецензенты и консультанты

Эта книга прошла проверку рядом специалистов, чей опыт
и знания помогли повысить её качество. Они поддерживали ме-
ня, делились обратной связью, участвовали в обсуждениях и вни-
мательной вычитке текста. Именно благодаря их вкладу книга
стала лучше. Я с удовольствием увековечиваю их имена на этих
страницах:

Владислав Абросимов, Дмитрий Афанасьев, Игорь Бабаев,
Егор Бугаенко, Зайнулла Жумаев, Иван Сорокин, Сергей Ивлев,
Денис Лопухин, Сергей Предводителев, Денис Тарков, Евгений
Уткин, Андрей Хэллдар, Владимир Чепелев.

Особые слова благодарности я хочу выразить моим друзьям:

Илье Чубарову
Дмитрию Скирте

Хватит предисловий. Пора наводить порядок.

11

>_

Всё начинается
с README

Первое, что видит разработчик, открывая репозиторий — это
небольшой файл, лежащий в корне проекта под именем README,
именно он формирует первое впечатление о коде и подходе ко-
манды к работе. Пустой или отсутствующий README — красноре-
чивый сигнал: с этим проектом, скорее всего, будет непросто.

12

В open-source это особенно важно: если документация неясна,
вряд ли кто-то захочет разбираться, не говоря уже о внесении
вклада. В коммерческой разработке мотивацией служит зарпла-
та, но это не означает, что вход в проект должен быть запутан-
ным и неприятным.

На практике README часто либо отсутствует, либо существует
лишь как формальность. Такое встречается в репозиториях ком-
паний любого масштаба.

Например, в корне может лежать пустой или шаблонный файл
README, созданный автоматически при инициализации —
и на этом всё. Иногда файл содержит только заголовок
ProjectName, без единого слова о сути проекта. А в худшем
случае README вообще нет, зато рядом находятся десятки разроз-
ненных скриптов и несколько почти одинаковых конфигурацион-
ных файлов: config_old.php, config_bak.php,
config_real_final.php.

Что с этим делать? Начать с простого — представить, что репо-
зиторий открыл разработчик, который впервые видит этот про-
ект. Что ему нужно знать в первую очередь? Вот минимальный
список разделов, которые стоит включить:

13

Описание проекта

Несколько строк, что делает проект и зачем он нужен. Без
маркетинга, по делу. Помогите читателю быстро понять, о чём
речь.

Weather — сервис для приёма погодных данных через REST API, их
обработки и дополнения вычисленными показателями.
Итоговые агрегированные отчёты доступны через REST API и веб-ин-
терфейс для просмотра и анализа.

Если проект достаточно крупный, добавьте ссылки на сопут-
ствующую документацию — это сильно упростит жизнь тем, кто
только начинает с ним работать:

Staging/dev-окружение (URL)
API-документация (например, Swagger)
Описание CI/CD pipeline
Отчёт о покрытии кода

Это минимизирует вопросы и сделает процесс вхождения
в проект значительно быстрее и комфортнее.

Установка и запуск

Чёткие инструкции по установке зависимостей и запуску про-
екта локально или в тестовой среде. Команды должны быть прове-
рены и воспроизводимы.

14

Пример:

make install
make up

Если не предусмотрена возможность запуска проекта локаль-
но, то укажите, как получить доступ к персональному тестовому
окружению или выделенному стенду разработчика.

Вполне нормально, что проект после установки будет чи-
стым/голым, без каких-либо данных. Но разработчику нужно по-
чинить баг или внести изменения. Заставлять его заполнять ка-
кие-либо данные вручную — плохая практика. Скорее всего, они
будут неполными, а возможно, и запутанными — например,
иметь названия «Test» или «Test 1» для первого и второго пользо-
вателя.

Вместо этого предоставьте и задокументируйте на этом этапе
возможность разработчику заполнить тестовые данные автомати-
чески, например с помощью команды вида:

make seed
make reset-db

Если тестовые данные генерируются, то укажите, как это сде-
лать. Если они импортируются из файла, то укажите, где его
взять и как использовать.

15

Тестирование

Если в проекте есть тесты — это прекрасно. Но мало просто
иметь их, важно объяснить, как их запускать.

Пример:

Для запуска всех тестов:
vendor/bin/phpunit

или для запуска тестов в определённой тестовой группе:
vendor/bin/phpunit --testsuite=Browser

Опишите, какие тесты есть (юнит, интеграционные), где их ис-
кать и какие требования нужны для запуска.

Структура каталогов

Хорошая структура — это договорённость, благодаря которой
каждый член команды с первой секунды понимает, куда пойти
за нужным кодом и куда сохранить новый. Представьте, что
вы пришли в библиотеку, где книги разбросаны по полу: поиск
нужного тома займёт вечность. То же самое и с проектом: без
чёткого каталога любой свой вклад вы будете оформлять в нерв-
ном режиме.

Допустим, вы работаете над внутренним проектом Weather —
платформой для анализа метеоданных. Вам поручили реализо-
вать класс, вычисляющий лунную фазу, чтобы добавить его
в блок астрономического прогноза.

В какой директории вы создадите этот класс:

16

В components?
В modules?
В services?
А может, в utils?

Если у вас нет описания структуры — быстрого ответа
вы не найдёте.

Потрудитесь коротко объяснить, что в них лежит. Даже если
вам кажется, что «и так понятно»:

project
├─ components // Переиспользуемые куски UI
├─ modules // Отдельные бизнес-модули (оплата, доставка)
├─ services // Работа с API и хранилищами
└─ utils // Вспомогательные функции без состояния

Это убережёт от вопросов в духе: «а куда это класть?» или ещё
хуже — от ситуации, когда каждый кладёт куда ему хочется. Это
не только про порядок — это способ синхронизировать мышление
всей команды.

Задайте жёсткую структуру. Мягкие договорённости не рабо-
тают. Слова вроде «примерно тут», «по смыслу ближе сюда»,
«у нас гибкий подход» — признак инженерной слабости. Структу-
ра либо определена, либо её нет.

А если ваш репозиторий большой и над ним работают несколь-
ко команд или отделов, рассогласованность в структуре — не ис-
ключение, а скорее норма. Даже если код работает, поддержи-
вать и развивать его в таких условиях всё сложнее.

17

Посмотрите, как может выглядеть типичная «естественно вы-
росшая» структура:

repository
├─ core
│ ├─ cfg
│ ├─ lib
│ └─ domain
├─ dashboard
│ ├─ components
│ ├─ conf
│ └─ stuff
├─ api
│ ├─ config
│ ├─ handlers
│ └─ logic
└─ cli
 ├─ etc
 └─ src

Каждый проект организован по-своему. Где-то config, где-то
conf, где-то cfg, где-то etc. В одном месте handlers, в дру-
гом — logic, в третьем — lib. Даже если каждый разработчик
понимает свою часть, в целом репозиторий превращается
в поле догадок.

Создание единой структуры каталогов помогает всей команде
наглядно увидеть разногласия и перейти к общей догово-
рённости. Вместо бессистемного подхода появляется чёткая ар-
хитектура, в которой каждый понимает, где что находится и за-
чем.

18

Сравните с вариантом, где команды договорились о едином
стиле:

repository
├─ weather-core
│ ├─ config
│ ├─ modules
│ └─ ...
├─ weather-dashboard
│ ├─ config
│ ├─ ui
│ └─ ...
├─ weather-api
│ ├─ config
│ ├─ routes
│ └─ services
└─ weather-cli
 ├─ config
 └─ commands

В такой структуре каталоги становятся не просто способом
хранить код, а единым языком команды. Всё предсказуемо, со-
гласовано и масштабируется без лишних вопросов. Подключение
новых разработчиков, автоматизация, CI/CD, документация — всё
это упрощается, когда структура работает на вас, а не против.

Но даже если вы не сможете договориться — это тоже
хорошо. Это значит, что между вами нет общего архи-
тектурного видения. А значит, и не должно быть обще-
го репозитория.

19

Ответственные лица

Каждый проект, как самолёт, должен иметь экипаж. Особенно
если это корпоративная разработка, где репозиториев десятки
или сотни. Открыв README, любой разработчик должен сразу по-
нимать: кто отвечает за этот код и к кому можно подойти с вопро-
сом, предложением или проблемой.

Укажите одного или нескольких мейнтейнеров — это может
быть ведущий разработчик, архитектор или просто человек, кото-
рый хорошо знает проект и готов принимать решения. Добавьте
способ связи: email или внутреннюю ссылку на профиль.

Это может казаться формальностью, но на самом деле — это
фундамент доверия и ответственности. Проект, под которым сто-
ит имя, внушает уважение. Даже у новичков появляется ощуще-
ние, что этот код — не брошен. Его кто-то любит. За него кто-то
отвечает.

В советских КБ — будь то Ильюшина, Туполева или Сухо-
го — под каждым самолётом стояло имя главного кон-
структора.

Когда ты ставишь под проект своё имя, он перестаёт быть про-
сто папкой с файлами. Он становится частью тебя. Это меняет от-
ношение к деталям. Люди начинают не просто писать код — они
становятся авторами.

Такой подход работает на всех уровнях. Люди гордятся кодом,
за который отвечают. Они вовлечены. Они стараются. Не потому
что кто-то требует, а потому что на проекте теперь есть лицо.

20

Когда имя ответственного указано прямо в репозитории,
не нужны матрицы компетентности, диаграммы HR и долгие по-
иски «а кто в этом шарит». Всё видно сразу: имя есть — значит,
человек в теме. Имени нет — не трогай, найди владельца.

Ответственный	Контакт	Статус
@ivanov	ivanov@corp	active
@smirnov	Jira: UI-32	maintenance
—	—	archived

В README написано Owner: @petrov — значит, Петров
отвечает. Не «вроде Петров», не «Петров что-то там
писал», не «поспрашивай у Петрова». Он указан —
он и есть интерфейс проекта.

Ответственный — это не контролёр. Это интеграционная точ-
ка. Он не обязан всё чинить или лично писать весь код. Но имен-
но он может подсказать, помочь или принять решение.

В идеале, если в проекте уже есть файл CODEOWNERS, который
используется не только для понимания кода, но и для автоматиза-
ции — назначения ревьюверов, интеграции с CI, поддержки доку-
ментации, — стоит либо встроить ключевую информацию из него
в README, либо просто сослаться на него.

21

>_

Великий монолит
После прочтения README в любом проекте возникает есте-

ственное желание оценить масштаб работы. Насколько велика си-
стема? Насколько быстро я смогу в ней разобраться и начать вно-
сить изменения? Эти вопросы важны не только для новичка, но и
отражают уровень прозрачности архитектуры и зрелости проек-
та.

Во многих экосистемах по умолчанию доминирует монолит-
ный подход. Это классика, проверенная временем.

22

Его по умолчанию используют:

Laravel (PHP)
Django (Python)
Ruby on Rails (Ruby)
Phoenix Framework (Elixir)
Spring (Java)
Sails (Node.js)

И этот список можно продолжать долго — монолиты надёжны,
удобны и, что важно, имеют широкую поддержку в виде инстру-
ментов и сообществ. Это безопасная отправная точка практиче-
ски для любого проекта.

Однако столкнуться с 20 000+ файлов и папок в репозито-
рии — для любого разработчика может стать демотивирующим
шоком. Это словно стоять перед огромным валуном и пытаться
его сдвинуть с места.

Даже опытный разработчик теряет мотивацию, когда не видит
чёткой структуры, границ ответственности, понятных точек вхо-
да. Это не просто психологический барьер — это профессиональ-
ная фрустрация: ты не понимаешь, где начать, как ничего не сло-
мать, как внести изменения безопасно.

В любой работе, будь то программный код, список дел или фи-
зическая работа — есть одно универсальное правило: разбивай
большую задачу на маленькие части.

23

Это вовсе не значит, что каждый монолит обязательно нужно
дробить на десятки микросервисов. Нет, не стоит драматизиро-
вать. Речь о том, что даже внутри монолита обязательно нужно
выделять и изолировать компоненты, которые можно вынести
в отдельные репозитории.

Например, в приложении для прогноза погоды есть класс тем-
пературы, который может автоматически записываться как в гра-
дусах Цельсия, так и в градусах Фаренгейта, его можно выделить
отдельно от монолита:

class Temperature
{
 // ...
}

Этот компонент можно вынести в собственный репозиторий,
покрыть тестами, добавить документацию и подключать через
Composer как внешнюю зависимость.

Такой подход упрощает основную кодовую базу и снижает ко-
гнитивную нагрузку: вместо тысячи связанных между собой фай-
лов разработчик имеет дело с чётко очерченным, изолированным
модулем.

Кроме того, переиспользуемые и опубликованные компоненты
не просто сокращают дублирование — они создают эффект «внеш-
ней границы», когда ответственность модуля очевидна и проверя-
ется временем.

24

Разработчику становится проще работать с проектом. Показав
небольшой модуль, он скажет и подумает: «Да, я могу разобрать-
ся с этим и внести изменения», — а потом постепенно расширять
понимание всего проекта и его частей. Это сильно снижает тре-
вожность и прокрастинацию. Чем понятнее и локальнее зада-
ча — тем выше вовлечённость.

Кроме того, отдельные небольшие пакеты часто можно и нуж-
но выкладывать в open source — это не то, что подпадает под
ограничения или коммерческую тайну. Это чистый, полезный, ча-
сто общепринятый код.

Они могут стать отличным инструментом для профессиональ-
ного роста и демонстрации своих навыков.

Часто можно встретить талантливых разработчиков, которые
годами работают внутри одной компании, в огромном монолите,
но не могут продемонстрировать ни одной строчки своего кода.
Почему? Потому что весь их труд спрятан за корпоративным
VPN, внутри безликой и плохо структурированной массы.

Поэтому небольшие компоненты и пакеты — это одновремен-
но и технический, и карьерный инструмент, который стоит ис-
пользовать каждому разработчику.

25

>_

Код как средство
коммуникации

Помните, что вы делали вчера? А позавчера? Четыре дня на-
зад? Месяц назад? Вряд ли вы сможете дословно вспомнить, что
мелькало на 69‑й странице вашей любимой книги или какие точ-
ные реплики звучали в той серии того сериала. И это нормально
— наш мозг сохраняет только то, что считает действительно важ-
ным, а всё остальное отбрасывает, чтобы не перегружаться.

26

Точно так же обстоят дела и с кодом. Когда вы возвращаетесь
к проекту, чтобы починить баг или добавить новую функциональ-
ность, вы сначала читаете код заново: знакомые приёмы встреча-
ются, но в целом вы анализируете каждую строчку.

Часто можно услышать, что код — это средство общения с ком-
пьютером: набор инструкций, например: «положи из X в Y».
Но после компиляции в байт‑код и многочисленных оптимизаций
от вашего исходника остаётся лишь упрощённый набор команд.
Машине безразличны стиль, комментарии и даже длина имён —
она выполнит любую версию кода.

А вот людям всё это куда важнее, поэтому правильнее сказать,
что код мы пишем не только для компьютера (хотя это тоже важ-
но), но и для коллег, для себя и для будущего «Я».

История знает немало исследований: например, ещё в 1989 го-
ду в IBM подсчитали, что больше половины рабочего времени раз-
работчиков уходит не на новое кодирование, а на чтение и пони-
мание чужого кода. Поэтому чем чётче выражена мысль в коде,
тем быстрее команда поймет, как он работает, тем проще сопро-
вождать и развивать проект.

Давайте сменим установку: думать не о том, как код поймёт
машина, а о том, как его воспримут коллеги и мы сами в буду-
щем.

27

Код — это тоже текст

Наша работа — это умственный труд, результатом которого
становятся тексты: код, документация, сообщения в коммитах
и комментарии. Вокруг нас много примеров того, как может быть
написан текст по-разному: Научная статья — строгая. Пост в бло-
ге — разговорный. Сообщение в мессенджере — короткое и по де-
лу. Код — это тоже текст, просто со своей спецификой. И у него
тоже есть читатель.

Чтобы понять, насколько важно, как написан текст, пред-
ставьте себе такое письмо:

Здраствуйте Я ПРОГРАМИСТ с БОЛЬЩИМ апытом де-
лал сайты и приложения для интирнета. Пишу код
на джаве и пхп ещо умею с питон и руби. Работал в раз-
ны места делал всьо што гаварили. Харашо разбераюсь
в компютерах и серварах, могу делать апдейт и чинить
баги. Если вазьмёте меня, не пажелеете, я осен-осен ста-
раюс.

Дочитывать не хочется, а приглашать на собеседование — тем
более. Даже если письмо будет оформлено без ошибок, оно всё
равно может произвести не лучшее впечатление:

28

Многоуважаемый господин! Сим доношу, что имею значи-
тельный опыт в делах программных: создавал сайты
и приложения для сети, пишу на Java и PHP, равно как
и с Python и Ruby знаком не понаслышке. Служил в раз-
ных местах, поручения исполнял добросовестно. В ком-
пьютерах и серверах разбираюсь, умею обновлять систе-
мы и исправлять неполадки. Аще примете — не пожалее-
те. Труд люблю, дело своё знаю.

Теперь это грамотно. Но стиль — перегружен, устаревший
и странно напыщенный. Такое письмо вызывает уже не раздраже-
ние, а недоумение.

Теперь представьте: это не кандидат, а ваш код. Что будет, ко-
гда два таких специалиста объединятся в одну команду? Скорее
всего, в кодовой базе появится нечто подобное:

Здраствуйте, господин! Сим доношу, что Я ПРОГРА-
МИСТ с БОЛЬЩИМ апытом делал сайты и приложения
для сети. Пишу код на Java и PHP ещо умею с питон и ру-
би не понаслышке. В компьютерах и серверах разбираюсь,
Харашо разбераюсь в компютерах и серварах, могу де-
лать апдейт и чинить баги. Если вазьмёте меня, не па-
желеете. Труд люблю, дело своё знаю.

29

Так выглядит проект, где два разработчика и полная свобода.
А теперь добавьте к ним в команду фаната «Звёздных войн», лю-
бителя Йоды, обожателя аббревиатур и экономного комментато-
ра. Результат — код, который… ну, «вроде работает», но никто
не понимает, как именно.

И дело не в грамматике, не в запятых. Проблема глубже: код
теряет свою речь и становится полностью неестественным.

Ожидания и реальность

При этом менеджеры и продукт-оунеры оценивают таких кан-
дидатов по совершенно другим критериям: затраченное время
и стоимость труда. Я ни разу не слышал, чтобы разработчиков
штрафовали или увольняли за работающий, но плохо написан-
ный код. Порой даже некомпетентные руководители могут под-
талкивать к этому, говоря: «Закостыли», «Делай хоть как-то»,
«Потом перепишем». А со временем сами начинают смеяться над
своими решениями от безысходности.

Единственный, кому по-настоящему нужен ясный код — это
высокомотивированный разработчик, который хочет разобраться
и сделать хорошо. Такой, как вы. Никто, кроме таких людей, как
вы, не будет действительно заботиться о коде. Тимлиду проще на-
строить линтеры, ввести формальные код-ревью и регламенты,
по которым без особого вникания будут ставить друг другу галоч-
ки. Но только увлечённый разработчик задаётся вопросом: удоб-
но ли это читать, сопровождать, дорабатывать? Поэтому очень
важно отстаивать своё мнение — ведь завтра именно вам придёт-
ся разбираться в том, что вы написали сегодня.

30

Стремление важнее совершенства

Не существует самого красивого человека на свете для всех,
лучшей книги, лучшего сериала. Так же не существует и идеаль-
ного кода. Даже в Open-Source проектах, за которыми следят ты-
сячи разработчиков, всегда найдутся спорные решения или ме-
ста, где можно было бы сделать лучше.

Но цель не в том, чтобы достичь идеала. Цель — в намерении.
В желании писать так, чтобы код был понятен, аккуратен, прия-
тен в работе.

Когда рядом есть люди, которые пишут с вниманием, с уваже-
нием к будущим читателям — это вдохновляет. Хочется и самому
придумать название переменной чуть удачнее, структурировать
код так, чтобы он читался легко. Такая культура — заразительна,
и она создаёт особую атмосферу в команде.

Если вы возьмёте на вооружение практики, описанные в этой
книге, — вы уже на голову выше большинства. Потому что старае-
тесь. Потому что старание видно в коде. И это не выдумка — это
то, что действительно ощущается теми, кто читает и поддержива-
ет проект.

31

>_

Форматирование
Вспомните, как в школе у вас были тетрадки в клетку и в ли-

нейку — для разных предметов свои. На уроках математики вы ак-
куратно писали «2 + 2 = 4», размещая каждый знак в отдельной
клетке. Оставляли пару строк между задачами, чтобы всё выгля-
дело опрятно и не сливалось.

Когда вы стали старше, то преподаватель просил оформлять
работы определённым образом: использовать определённый
шрифт, выделять заголовки, проставлять нумерацию страниц
и вставлять колонтитулы. Возможно, вы считали, что это подавля-
ет индивидуальность, но делалось это не просто так.

32

Единый формат облегчает чтение, проверку и сравнение.
Представьте: каждая работа оформлена по-разному. Кто-то пи-
шет в клетку, кто-то — в линейку, а кто-то и вовсе на белом ли-
сте, без разметки. Сколько бы времени ушло только на то, чтобы
«вникнуть» в текст? Выглядели бы вычисления по математике
на листе в линейку красиво? Конечно же, нет.

Так и с кодом. Когда в Google внедрили единый стиль кодиро-
вания, время прохождения ревью сократилось на 30%. Это не зна-
чит, что программисты стали умнее, а потому что перестало ме-
шать оформление.

Но форматирование кода не преподают, не снижают оценки
при обучении и на него вообще не обращают внимания.

Рассмотрим небольшой фрагмент кода:

// Плохо [✗]
class BlipController extends Controller {
 public function index (){
 $blips=Blip::with('user')->latest()->get() ;
 return view('blips.index',[
'blips' => $blips]);
 }
 public function update(Request $request , Blip $blip)
{
 $blip->update($request->validated());

 return redirect()->route('blips.index');}
}

33

Код рабочий, синтаксических ошибок нет. Но посмотрите вни-
мательнее: уже на двух методах видно, что стиль гуляет — лиш-
ние пробелы, где-то отступ есть, где-то нет, скобки кто как поста-
вил. Это создаёт ощущение небрежности и усложняет чтение.

Исправить это — дело пары минут. И чем раньше вы начнёте
обращать внимание на такие детали, тем легче будет работать
с вашим кодом — вам и другим.

Забудь привычки

У каждого разработчика со временем формируются свои при-
вычки. Один любит писать скобки на той же строке, другой —
на новой. Один ставит пробел перед скобкой, другой считает это
дурным тоном. Всё это — дело вкуса.

Но вот в чём загвоздка: вкусы у всех разные, а кодовая ба-
за — одна.

Допустим, в проекте работают два разработчика. Каждый
оформляет код по-своему:

extends Controller
{
 // ...
}

extends Controller {

 // ...
}

34

Оба уверены в правильности своего стиля и могут привести ве-
сомые аргументы. Но код — это общее пространство. Здесь важ-
нее не то, чей стиль «красивее», а то, чтобы он выглядел так, как
будто его писал один человек. Даже если над ним работают пят-
надцать разработчиков. Кому-то придётся уступить — это нор-
мально.

Отнеситесь к этому как к государственной форме документа.
Есть определённый шаблон, единый для всех граждан. Неважно,
нравится ли шрифт, цвет или размер бумаги — важно, чтобы
стиль был единым.

Если язык программирования достаточно зрел, скорее всего,
у него есть общепринятые стандарты. Например, для PHP есть
PSR-12 и основанный на нём PER — PHP Extended Recommenda-
tion.

Все эти стандарты охватывают очень большое количество ас-
пектов оформления кода, включая отступы, пробелы, переносы
строк, скобки, длину строки и многое другое.

Возможно, сначала будет непривычно, но вы быстро привыкне-
те и перестанете замечать отступы и переносы, сосредоточив-
шись на содержимом.

Как внедрять форматирование?

Как же тогда это внедрить? Не писать же комментарий колле-
ги на каждую строчку кода в ревью? Это отнимет слишком много
времени и превратится в абсурд. На самом деле — это одна из са-
мых простых практик в этой книге. Потому что уже есть множе-
ство инструментов автоматизации, например, Laravel Pint или
PHP-CS-Fixer, которые будут автоматически исправлять код:

https://www.php-fig.org/per/coding-style/

35

// Хорошо [✓]
class BlipController extends Controller
{
 public function index()
 {
 $blips = Blip::with('user')->latest()->get();

 return view('blips.index', [
 'blips' => $blips,
]);
 }

 public function update(Request $request, Blip $blip)
 {
 $blip->update($request->validated());

 return redirect()->route('blips.index');
 }
}

Пусть работает машина

Очень часто всё заканчивается полумерой: «Обязательно за-
пускай линтер перед каждым коммитом!» и добавляют проверку
в CI. Вроде разумно. Но это как просить студентов самостоятель-
но проверять орфографию на экзамене.

Разработчик отправил код и ушёл на обед, надеясь, что когда
вернётся — получит верификацию и, может быть, ревью. Но, вер-
нувшись, он видит: тесты не прошли. Линтер упал из-за пробела
в конце строки. Смешно? Нет. Просто глупо.

36

Можно, конечно, в очередной раз напомнить: «Проверь перед
коммитом», «Запусти линтер вручную», «Не забудь отформатиро-
вать». Но зачем? Если это можно делегировать машине — пусть
делает она. Без напоминаний. Без обсуждений.

Это всё равно что зайти на Госуслуги и увидеть форму для вхо-
да, где можно ввести в свободное поле СНИЛС или номер телефо-
на. Который можно ввести по-разному:

89512345678,
+79512345678,
9512345678,
+7(951)234-56-78
и ещё множество вариантов.

Было бы странно, если бы где-то внизу было сказано: «Если
вы вводите номер телефона, вводите его строго в формате XXX».
Сайт заботится о пользователе и сам стандартизирует ввод, при-
водя ваш номер к единому формату.

37

Поведение должно быть аналогичным: разработчик отпра-
вил код. Линтер в CI автоматически привёл его в порядок. После
этого — запустились тесты. Всё прошло. Разработчик спокойно
обедает. Команда работает. Никто не отвлекается на ерунду.

Вот что по-настоящему эффективно. Не заставляйте разработ-
чика думать об этом вовсе. Не возвращайте его к коду из-за про-
бела, скобки, пустой строки. Это абсурд.

Пусть он думает о логике. Об архитектуре. О том, за что его
на самом деле наняли.

38

>_

Код должен дышать
Форматирование делает код опрятнее: выравнивает отступы и

расставляет пробелы. Но автоматические инструменты не пони-
мают его смысла. Они не знают, где заканчивается одна логиче-
ская структура и начинается другая.

А программисту важно видеть не строки, а блоки логики. Каж-
дое завершённое действие — новая мысль, её нужно отделять пу-
стой строкой, чтобы код было проще читать и понимать.

Если не дать коду «дышать», он превращается в сплошной по-
ток текста. Такой код давит. Утомляет. Изматывает. В нём легче
ошибиться — потому что невидна структура.

39

Плохая новость:

Ни один автоматический инструмент форматиро-
вания не научит ваш код дышать.

Рассмотрим пример:

// Плохо [✗]
$user = $request->user();
$zone = ClimateZone::find($id);
$zone->assign($user);
$zone->save();
return $zone;

Плотность текста не даёт глазу сделать паузу и понять, где
что происходит. Всё сливается в один поток. Лучше отделять каж-
дую завершённую мысль пустой строкой. Пусть будет пауза. Это
нужно не для компьютера, а для человека, чтобы это выглядело
так:

// Хорошо [✓]
$user = $request->user();

$zone = ClimateZone::find($id);
$zone->assign($user);
$zone->save();

return $zone;

40

Такой код «дышит»:

первый блок — получение пользователя;
второй блок — работа с климатической зоной;
третий блок — возврат результата.

Ещё пример с условием и несколькими действиями:

// Плохо [✗]
if ($user->isAdmin()) {
 $settings->loadDefaults();
 $settings->setTheme('dark');
 $settings->applyUserPreferences();
 $settings->enableNotifications();
 $settings->save();
 Log::info('Настройки для администратора обновлены');
}

Разобьём на осмысленные части:

// Хорошо [✓]
if ($user->isAdmin()) {
 $settings->loadDefaults();
 $settings->setTheme('dark');

 $settings->applyUserPreferences();
 $settings->enableNotifications();

 $settings->save();

 Log::info('Настройки для администратора обновлены');
}

41

Теперь каждое действие выделено, и мозгу легче уловить логи-
ку. Но тут важно не переборщить. Код должен дышать, но не за-
дыхаться.

Иногда пауза мешает, их избыток разрушает поток. Бывает
код, где всё держится на ритме — строка за строкой, быстро, без
отступов. И вставленная пустая строка рвёт это ощущение, как
случайный абзац посреди строки диалога.

Например, вот так:

// Плохо [✗]
$logger->debug('start');

$service->prepare();

$service->run();

$logger->debug('done');

Здесь пустые строки разрывают логическую цепочку, которая
воспринимается лучше как единое целое — это последователь-
ность действий, которую хочется видеть непрерывной.

$logger->debug('start');

$service->prepare();
$service->run();

$logger->debug('done');

42

Если сомневаетесь, нужно ли ставить пустую строку, попро-
буйте вместо неё вставить комментарий. Если он логично завер-
шает блок, значит, и отступ уместен. А если не уверены — всё
равно отделите. Хуже точно не будет.

Код должен читаться так же, как текст — с абзацами, паузами
и интонацией. Если убрать структуру — рушится восприятие.

43

>_

Именование
Иногда достаточно открыть структуру проекта, чтобы многое

понять о команде. И не в лучшую сторону. Например, можно
встретить такие каталоги:

project
├─ old_config
├─ mordor
├─ BlackMagic
└─ ...

44

Причин для их появления масса. Кто-то просто скопировал ста-
рую директорию. Кто-то решил временно «вынести в сторону»
непонятный или страшный код. Но так и не разобрался, что
с ним делать. А потом это «временно» прижилось и стало частью
архитектуры. Это симптом того, что именованию в проекте никто
не уделяет внимания, а ведь имена — это первая линия коммуни-
кации.

Теперь представьте, что вы открыли чужой код и наткнулись
на переменные:

$pogoda;
$veter;
$solnce;

Такие имена мгновенно выдают новичка.

Это напоминает, как я писал СМС-сообщения в нулевых: тогда
сообщения имели ограничение по количеству символов, а на ла-
тинской раскладке в одно сообщение помещалось намного боль-
ше текста, чем при использовании кириллицы. Поэтому, если
не удавалось уложиться в лимит, я писал транслитом:

Privet. Mi segodnya vtretimsya v parke?
Ya vzal s soboy...

Это была вынужденная мера, но та эпоха давно закончилась.
В программном коде большинство фреймворков, библиотек, доку-
ментаций — на английском. Если в коде появляется нечто вроде:

45

class Order extends Controller
{
 public function ...()
 {
 // ...
 foreach ($zakazy as $tovar) {
 $product->otpravka($tovar);
 }
 // ...
 }
}

Создаётся разрыв контекста, фреймворк говорит на одном язы-
ке, твой код — на другом. Переключаться между языками утоми-
тельно, особенно в больших проектах. Это снижает читаемость
и замедляет понимание.

Если имена переменных, файлов, классов, папок не передают
смысл — они становятся ментальным мусором. Чем их больше —
тем труднее читать, понимать и поддерживать код.

Поэтому нужно заботиться об именовании. Но что делает име-
на хорошими? И как начать исправлять это прямо сейчас?

Некоторым разработчикам нравится использовать сокраще-
ния в именах, что кажется для них удобным и помогает ускорить
написание кода. Некоторые языки даже рекомендуют подобный
подход — например, в языке Go советуют:

46

Имя объекта, для которого вызывается метод, должно
отражать его суть; часто достаточно одной или двух
букв, обозначающих тип (например, «c» или «cl» для
«Client»). Не используйте общие имена вроде «me», «this»
или «self».

Сокращения могут быть как однобуквенными, так и более
длинными или смешанными, например, итерация цикла как $i,
запрос как q, интерфейс как IComponent. Однако зачастую по-
добные сокращения лишь приводят к путанице и усложняют под-
держку кода.

Это происходит потому, что, взяв небольшой фрагмент кода,
невозможно сразу понять, что происходит. Разработчику прихо-
дится либо возвращаться к месту объявления переменной, чтобы
разобраться, либо открывать исходники метода или класса. В ито-
ге такой код начинает выглядеть как шифровка: смотришь
на него — не понимаешь, что значит каждая переменная. Потом
приходится искать «ключ», чтобы расшифровать смысл, и так
по кругу. Но мы ведь не должны заниматься разведкой.

Давайте рассмотрим следующий пример:

// Плохо [✗]
$usr = User::find($id);

// Хорошо [✓]
$user = User::find($id);

47

Здесь переменная $usr представляет объект пользователя. Од-
нако, сокращённое имя $usr не даёт понимания того, что имен-
но хранится в этой переменной.

// Плохо [✗]
class UsrCtrl extends Ctrl {
 public function f() {
 // ...
 }
}

В данном примере имя класса UsrCtrl недостаточно информа-
тивно. Разработчику, сталкивающемуся с этим классом впервые,
будет трудно понять его назначение. Название класса должно
чётко отражать его функциональность, например, ProfileCon-
troller.

// Хорошо [✓]
class ProfileController extends Controller
{
 public function show()
 {
 // ...
 }
}

В некоторых книгах по программированию можно встретить
утверждения, что код должен быть самодокументируемым. Это
значит, что имена переменных, методов и классов должны объяс-
нять, что происходит — без комментариев, без документации, без
менторов.

48

Некоторые даже добавляют:

«Пусть имя будет длинным — это сделает код самодоку-
ментированным и более понятным».

Нет. Не делает. Особенно если это имя — дымовая завеса над
тем, что в коде нет ни логики, ни смысла.

Я встречал разработчиков, воспитанных на строгих правилах:
«Имена должны быть максимально подробными, чтобы не нужны
были комментарии».

В теории звучит благородно, но на практике часто рождает чу-
довищные конструкции вроде:

public function retrieveUserAccountByEmailAddress(
 string $email
): ?UserAccount

Да, здесь всё предельно описательно. Но вместе с этим — чрез-
мерно длинно, тяжело читается и мешает восприятию кода.
А ещё хуже, когда длинные имена тратят всю эту длину не на кон-
кретику, а на расплывчатые абстракции:

49

abstract class AbstractContextHandler
{
 use SemanticMapper;

 public string $moduleScopeIdentifier = 'reporting';

 public function process(
 array $contextualizedComponentUnitPayload
): array
 {
 $moduleScopedUnits = [];

 foreach ($contextualizedComponentUnitPayload as $con-
textBoundSemanticUnit) {
 $moduleScopedResponseUnits[] = $this->transformCon-
textUnit($contextBoundSemanticUnit);
 }

 return $moduleScopedResponseUnits;
 }

 protected function transformContextUnit(
 $contextBoundSemanticUnit
): array
 {
 return [
 'encodedPayloadFragment' => $this->map($contextBound-
SemanticUnit),
 'operationalModuleDomain' => $this->moduleScopeIden-
tifier,
];
 }
}

Что делает этот класс? Не ясно. Что он обрабатывает? Какой
«контекст»? Какой «модуль»? Что за «единицы компонентов»?

50

Это типичный корпоративный анти-паттерн: взять простую за-
дачу, обернуть её в кучу терминов, и сделать вид, что это архитек-
тура.

Этот код невозможно понять. Не потому что он глупый. А пото-
му что этот код никогда ничего конкретного не делал.

Конкретика

Предыдущий пример лишён конкретики, но она может отсут-
ствовать и в именах переменных вроде таких:

// Плохо [✗]
$data;
$var;
$info;
$item;

На первый взгляд выглядят нормально. И правда, в крошеч-
ных методах, где весь контекст на виду, такие имена вполне чита-
емы. Но стоит методу хоть немного разрастись — и смысл пере-
менной начинает размываться.

Что именно скрывается за $data? Это может быть пользова-
тель, список заказов, JSON или какая-нибудь внутренняя структу-
ра. Мы не знаем, пока не полезем внутрь: смотреть, что туда при-
сваивается, как используется, что откуда приходит. А даже если
разберёмся — не факт, что в другом месте кода $data не означа-
ет уже совсем другое.

51

Это относится и к методам, иногда вполне нормально иметь
метод run для классов, которые выполняют одну единственную
функцию (так называемые action‑классы). Но это совершенно
не информативно для масштабных объектов, например:

// Плохо [✗]
$user->run();
$user->handleData();
$user->process();

Старайтесь использовать информативные имена, которые отра-
жают суть того, что они представляют, например:

// Хорошо [✓]
$user->posts();
$user->notify(...);
$user->deactivate();

Логические значения

Переменные и методы, которые содержат логическое значе-
ние (true или false), часто называют непонятно. Например:

// Плохо [✗]
$admin;
$retry;
$user->access();

52

В этих примерах трудно понять назначение переменной или
метода: $admin может быть флагом или объектом пользователя,
$retry — числом попыток или логическим состоянием, а метод
access() — проверкой доступа или действием. Чтобы сразу бы-
ло понятно, что значение логическое, используют префиксы is,
has и should:

// Хорошо [✓]
$isAdmin = true;
$shouldRetry = false;
$user->hasAccess();

Единицы измерения

Рассмотрим пример именования переменных с указанием еди-
ниц измерения температуры:

// Плохо [✗]
$temperature = 98.6;

На первый взгляд всё выглядит нормально — просто число.
Но что это за температура? Фаренгейты? Градусы Цельсия? Кель-
вины?

Ситуация усложняется, если в другом месте кода встречается:

$temperature = 37;

53

Чтобы избежать путаницы, можно явно указывать единицы из-
мерения:

// Хорошо [✓]
// Мы явно указываем, что это температура в фаренгейтах
$temperatureInFahrenheit = 98.6;

// Хорошо [✓]
// Или в градусах Цельсия
$temperatureInCelsius = 37;

Другой способ справиться с этим — создать специальные объ-
екты. Создадим объект Temperature со статическими конструк-
торами, каждый из которых явно указывает единицу измерения:

54

class Temperature
{
 public static function fromCelsius(float $degrees): self
 {
 return new self($degrees);
 }

 public static function fromFahrenheit(float $degrees): self
 {
 $celsius = self::convertFahrenheitToCelsius($degrees);

 return new self($celsius);
 }

 private function __construct(
 public float $valueInCelsius,
) {}
}

Использование класса Temperature поясняет, что ожидается:

// Хорошо [✓]
$temperature = Temperature::fromFahrenheit(98.6); // 37.0°C
$temperature = Temperature::fromCelsius(37.0); // 37.0°C

Таким образом, единица измерения становится несуществен-
ной — объект скрывает детали и позволяет получить значение
в нужном формате.

55

Будь кратким

Не стоит пытаться расписать всё длинными именами в надеж-
де, что это сделает код понятнее. Вместо этого давайте ровно
столько информации, чтобы можно было уверенно принимать ре-
шения. А всё лишнее — уберите.

Рассмотрим пример:

// Плохо [✗]
class PostItemCollection
{
 public function addPost(Post $post)
 {
 // Добавляем пост в коллекцию
 }

 public function hasPost(Post $post): bool
 {
 // Проверяем, есть ли пост в коллекции
 }

 public function clearPost()
 {
 // Очищаем коллекцию
 }
}

Здесь много повторов и избыточных уточнений в именах мето-
дов. Ведь всё понятно из контекста класса — это коллекция по-
стов. При этом слово Item в имени класса ничего не добавляет
и скорее мешает.

56

Поэтому лучше упростить:

// Хорошо [✓]
class PostCollection
{
 public function add(Post $post)
 {
 // Добавляем пост в коллекцию
 }

 public function has(Post $post): bool
 {
 // Проверяем, есть ли пост в коллекции
 }

 public function clear()
 {
 // Очищаем коллекцию
 }
}

Теперь вместо длинных имён — простой класс с тремя понят-
ными методами: add, has и clear. Каждый делает ровно то, что
ожидаешь, без лишних слов.

Такой подход помогает избежать длинных и сложных имён,
при этом сохраняя ясность и понятность. Код становится чище,
короче и проще для восприятия.

Использование суффикса -er

В мире объектно-ориентированного программирования слиш-
ком часто встречаются имена классов вроде:

57

Manager
Controller
Formatter
Presenter

Эти имена плохи не потому, что они технически неверны. Они
плохи потому, что не говорят ничего конкретного, слишком аб-
страктны.

Такая абстракция хороша для высокоуровневых концепций ти-
па фреймворков, но не для конкретных классов в вашем приложе-
нии.

А ведь имя класса — это первый и, зачастую, единственный ис-
точник информации о его ответственности.

Эти имена — дымовая завеса. Они скрывают детали, замылива-
ют смысл, делают код нечитаемым, а архитектуру — расплывча-
той. Они подменяют суть интерфейсом, упрощая названия до аб-
сурда. Да, это удобно. Да, так делают все. Но именно поэтому
ваш проект через год превращается в груду мусора.

// Плохо [✗]
class ReportManager { /* … */ }
class StringFormatter { /* … */ }

// Хорошо [✓]
class StringTruncatedToLength { /* … */ }

Если вы не можете придумать конкретное имя — это сигнал,
что саму ответственность объекта стоит пересмотреть.

58

Парные имена

Методы в паре работают лучше, когда звучат как единое це-
лое. Они напоминают диалог: начало перекликается с концом.

Рассмотрим пример, где имена не согласованы:

// Плохо [✗]
$object->startProcess();
$object->completeTask();

Здесь методы словно из разных рассказов — они не складыва-
ются в цельный образ. Такой код заставляет остановиться и заду-
маться, как эти действия связаны между собой. Это — явный при-
знак слабого дизайна и плохой коммуникации через код.

Гораздо эффективнее, когда методы звучат как пара, поддер-
живают одну мысль и логически соответствуют друг другу:

// Хорошо [✓]
$object->startProcess();
$object->finishProcess();

Или так:

$object->beginTask();
$object->completeTask();

59

Тогда логика воспринимается как диалог — вызов и ответ. Та-
кой подход существенно облегчает понимание кода: у читателя
возникает естественный и логичный поток мысли.

Но чтобы такой «диалог» методов работал ещё лучше, класс
должен быть сфокусирован на одной задаче или сущности. Напри-
мер:

// Хорошо [✓]
$task->begin();
$task->complete();

// Хорошо [✓]
$task->start();
$task->finish();

Здесь класс чётко определяет свою зону ответственности — ра-
боту с задачей. Методы — естественные этапы жизненного цикла
этой задачи. Такой фокус значительно упрощает тестирование,
поддержку и развитие кода.

Не обманывай

Мы верим, что метод делает то, что обещает его имя. Мы ве-
рим, что класс отражает свою роль. Мы верим, что код говорит
правду. Но стоит нарушить это правило — и доверие рушится.
Имя, которое вводит в заблуждение, оставляет ощущение преда-
тельства: разработчик ожидал одно поведение, а получил другое.
После этого каждый следующий метод он будет читать уже с по-
дозрением.

60

Пример метода с вводящим в заблуждение названием:

// Плохо [✗]
public function saveModels(array $item): void
{
 $model = new Model();
 $model->setAttributes($item);
 // ...
}

Метод заявляет, что он сохраняет модели — во множествен-
ном числе, и принимает массив. Если не заглядывать внутрь, лю-
бой прочитавший его разработчик подумает, что использовать
его можно примерно так:

$models = [
 new Model(),
 new Model(),
 new Model(),
];

$object->saveModels($models);

Но вместо этого — разочарование от предательства. Метод бе-
рёт массив, который на самом деле описывает атрибуты одной мо-
дели. Название подтолкнуло к ложной ментальной модели. Назва-
ние обещало одно действие, а сделало совершенно другое.

Это подрывает базовый инструмент командной работы —
язык. Когда названия перестают соответствовать коду, разработ-
чики очень быстро теряют к нему доверие, начинают бояться
ошибиться и реже вносят изменения.

61

Соглашение об именовании

Имена — это не только классы, объекты и методы. Они затра-
гивают всё вокруг. Например, в веб-приложении важно выбрать
понятные имена для адресов:

https://example.com/WeatherReport
https://example.com/weather_report
https://example.com/weather-report

То же касается ключей в JSON-переводах:

{
 "WeatherReport": "Отчёт о погоде",
 "weather_report": "Отчёт о погоде",
 "weather-report": "Отчёт о погоде"
}

Или файлов и директорий, не связанных напрямую с языком
или фреймворком:

project
├─ WeatherReports
├─ weather_reports
├─ weather-reports
└─ ...

Чтобы всё оставалось предсказуемым, выработайте в команде
своё соглашение и используйте его там, где общие правила не по-
могают.

62

>_

Магические значения
Никто не начинает изучение проекта с вдумчивого чтения

всей вики. Разработчик открывает редактор кода, запускает по-
иск по имени метода или класса — и вперёд, прямо в код. Только
когда поведение становится неочевидным, когда логика не скла-
дывается — он обращается к документации, вики, базе знаний, ес-
ли такая вообще есть, или, ещё хуже, к коллеге, выпрашивая ин-
формацию по чайной ложке.

63

Рассмотрим классическую ситуацию:

// Плохо [✗]
if ($status == 1) {
 // ...
}

На первый взгляд — ничего страшного. Просто проверка стату-
са. Но что значит это число 1? Почему именно оно?

Разработчик, который это писал, наверняка знает, что 1 здесь
означает «активный статус». Но для всех остальных — это маги-
ческое число, появившееся из ниоткуда. Код превращается в за-
гадку: почему не 0? А может быть значение 2? А в статус при-
ходит 1 или true?

Теперь представьте, что этот код читает кто-то вроде меня —
из мира Linux. В Unix‑системах код 0 означает успешное заверше-
ние, а 1 — ошибку. И я интуитивно читаю этот код иначе: «О,
тут проверяется, что была ошибка?» Мои привычки вступают
в конфликт с чужими соглашениями — и я начинаю сомневаться
в логике самого кода.

А если значение гораздо больше, например:

// Плохо [✗]
if ($status == 24) {
 // ...
}

64

Что это значит? День рождения начальника? Номер ошибки?
Идентификатор тайного соглашения?

Загадочными могут быть не только числа. Иногда код может
притаить за собой набор символов:

// Плохо [✗]
if ($char === '%!') {
 // ...
}

Что значит %!? Если значение несёт смысл, пусть оно громко
заявляет о себе именем. Тогда станет ясно, зачем оно здесь и как
его использовать дальше — с помощью константы:

// Хорошо [✓]
const STATUS_ACTIVE = 1;

if ($status === STATUS_ACTIVE) {
 // ...
}

Теперь код стал более понятным и поддерживаемым. При его
чтении сразу становится ясно, что проверяется в условии.

65

Можно пойти дальше и использовать перечисления для явно-
го определения различных значений:

// Хорошо [✓]
enum Status: string
{
 case ACTIVE = 'active';
 case INACTIVE = 'inactive';
 case ARCHIVED = 'archived';
}

if ($status === Status::ACTIVE) {
 // ...
}

Или числовым значением:

// Хорошо [✓]
enum Status: int
{
 case ACTIVE = 1;
 case INACTIVE = 2;
 case ARCHIVED = 3;
}

if ($status === Status::ACTIVE) {
 // ...
}

Такой подход делает код более читаемым и позволяет явно
указать доступные значения статуса, а также использовать типи-
зированное значение в методах, например:

66

function canBePublished(Status $status): bool
{
 // ...
}

Используя именованные константы или перечисления, мы де-
лаем код более понятным и поддерживаемым, ведь нам не нужно
обращаться ни к документации, ни к коллеге за прояснениями,
что важно для разработки масштабируемых приложений.

Переизбыток констант

Когда речь заходит о «магических значениях», первый ин-
стинкт многих начитанных только первой частью разработчи-
ков — немедленно заменить каждое из них на именованную кон-
станту. Как было показано ранее, это логично, но не всегда ра-
зумно. Проблема не в самих константах, а в том, как читается
код и насколько понятна его суть.

Рассмотрим реальный пример:

// Плохо [✗]
class Order
{
 public function daysSinceLastUpdate(): float
 {
 return $this->updated_at / 1_000_000 / 60 / 60 / 24;
 }
}

67

Здесь мы видим цепочку арифметических операций, и каждый
разработчик, читающий этот код, вынужден мысленно раскручи-
вать её: «Так, это микросекунды, потом секунды, потом минуты…
ага, значит, это перевод времени в дни». Это усложняет чтение
и отвлекает от сути метода.

После слепого ввода многочисленных констант пример начи-
нает выглядеть так:

// Плохо [✗]
class Order
{
 private const MICROSECONDS_IN_SECOND = 1_000_000;
 private const SECONDS_IN_MINUTE = 60;
 private const MINUTES_IN_HOUR = 60;
 private const HOURS_IN_DAY = 24;

 public function daysSinceLastUpdate(): float
 {
 return $this->updated_at
 / self::MICROSECONDS_IN_SECOND
 / self::SECONDS_IN_MINUTE
 / self::MINUTES_IN_HOUR
 / self::HOURS_IN_DAY;
 }
}

Формально код стал «говорящим». Но читается он по‑прежне-
му тяжело. Мы заменили магию чисел на большое количество де-
талей.

68

Вместо того чтобы «расшифровывать» механику времени вруч-
ную, лучше полностью передать заботу об этом классу, который
создан именно для этой работы. Например, Carbon:

// Хорошо [✓]
use Carbon\Carbon;

class Order
{
 public function daysSinceLastUpdate(): float
 {
 return Carbon::create($this->updated_at)
 ->floatDiffInDays(now());
 }
}

Не всякое «магическое значение» нужно заменять на констан-
ту. Иногда лучший способ устранить магию — не объяснять
детали вообще. Спрячьте реализацию за выразительным интер-
фейсом. Пусть код говорит, что он делает, а не как.

Ещё лучше будет, если наши свойства сразу будут объектами:

// Хорошо [✓]
class Order
{
 public function daysSinceLastUpdate(): float
 {
 return $this->updated_at->floatDiffInDays(now());
 }
}

69

Если кажется, что время слишком простой пример, то вот по-
хожий с размером файла:

// Плохо [✗]
class File
{
 public function humanReadableSize(): string
 {
 return $this->size / 1024 / 1024 . ' MB';
 }
}

Для которого добавили константы:

// Плохо [✗]
class File
{
 private const SHORT_MEGABYTE = 'MB';
 private const BYTES_IN_MEGABYTE = 1024 * 1024;

 public function humanReadableSize(): string
 {
 $megabytes = $this->size / self::BYTES_IN_MEGABYTE;

 return sprintf(
 '%.2f %s',
 $megabytes,
 self::SHORT_MEGABYTE
);
 }
}

70

Вместо таких констант лучше всего делать классы, которые бу-
дут скрывать все эти вычисления. К тому же они сразу же будут
переиспользованы в вашем проекте в других местах, чем вводить
новые приватные константы или, ещё хуже, объявлять публичны-
ми у File и ещё больше увеличивать связность.

// Хорошо [✓]
class File
{
 public function humanReadableSize(): string
 {
 return $this->size->toHumanReadable();
 }
}

71

>_

Размер имеет значение
В детстве мы играли в простую, но удивительно поучительную

игру. Дети становились в круг, и один из них начинал перекиды-
вать мяч. Но это был не просто мяч — это была «горячая картош-
ка». И правила были предельно ясны: поймал — тут же бросай
дальше. Максимум одна секунда. Кто задержал — проиграл. Ни-
каких пауз, планов и стратегий. Только действие. Только переда-
ча.

Если ты хоть на мгновение задумался — обжёгся. Здесь нет
времени для сомнений: нужно полагаться на интуицию, играть
легко и не мешать ходу игры.

72

Так и с кодом. Каждый класс, каждый метод, каждая строка —
это не долгий монолог, а быстрый пас, моментальный результат,
передача задачи следующему игроку. Код не должен «держать
мяч» в руках подолгу, копаться в себе, раздувать внутренние
сложности, мешать движению.

У каждого должна быть одна цель — передать задачу и не тор-
мозить процесс. Ассоциируйте это как:

Класс — это игрок.
Метод — это пас. Он может быть левой рукой, правой, мож-
но схватить или отбросить мяч.
Строки — это момент перед броском.

Когда момент перед пасом выглядит вот так:

// Слишком длинный метод [✗]
public function export(string $key)
{
 // ...
 // ...
 // 1000 строк кода
 return $result;
}

То получается, что игрок ловит мяч и не бросает. Он встал по-
среди круга и начал делать кувырки, включил музыку, рассказал
стихотворение и только потом — спустя долгие секунды — нако-
нец передал мяч дальше.

73

Это раздражает не только других игроков при игре, ведь
то же самое происходит с кодом, когда его размер выходит за ра-
зумные пределы. Длинные методы и классы начинают запуты-
вать, а вместо ясности мы получаем неразбериху, с которой слож-
но работать.

Точно так же, как перегруженные предложения, огромные
блоки кода перегружают восприятие. Читая их, трудно понять,
о чём конкретно идёт речь, и приходится возвращаться к началу,
чтобы разобраться, что вообще происходит.

Худшие разработчики гордятся таким кодом: «Он сложный»,
«Он умный», «Он крутой». А если его трудно читать, советуют
лучше разобраться в основе. Но на самом деле это просто неуме-
ние передать мяч как можно быстрее. Некоторые разработчики
пытаются исправить проблему, формально дробя код на отдель-
ные методы:

74

// Слишком длинный метод [✗]
public function export(string $key)
{
 // Загрузка данных
 // Валидация
 // Преобразование
 // Генерация отчёта
 // Сохранение в файл
 // Отправка по почте
 // И ещё десяток шагов...
 $this->step();
 $this->step();
 $this->step();
 $this->load();
 $this->validate();
 $this->transform();
 $this->generateReport();
 // И ещё десяток шагов...
 $this->sendMail();
 return $result;
}

На первый взгляд — красиво, ведь метод export() записан
условно в пять строчек. Но где тут само «сердце»? Вам приходит-
ся прыгать из метода в метод, искать смысл: «а, здесь что-то под-
гружается, а вот здесь валидируется, а вот здесь ещё что-то про-
исходит…». Глаз бегает по коду без чувства завершённости.

75

Правильно дробить — значит давать каждому этапу собствен-
ную осмысленную ответственность, а не делать «пустую оболоч-
ку» ради экономии строк. Если метод публичный, он должен отра-
жать высокоуровневый шаг, понятный «с первого взгляда». А при-
ватные методы должны решать действительно отдельный логиче-
ский блок, а не просто «задёргивать» следующий вызов без соб-
ственной логики.

Хороший публичный метод должен вызывать у вас реакцию:
«Да, это целостный шаг!» Например:

// Хорошо [✓]
$document = Document::find(1);

$content = $document->export(Excel::class);

$user->notify(ExportNotification::class, [
 'content' => $content->toString(),
]);

Каждая строка — как законченный абзац. Здесь нет прыжков
по стеку. Всё перед глазами и мы наглядно видим, что сдела-
ли пас.

Но даже когда мы избавились от процедурного стиля «шаг1»,
«шаг2», «шаг3», очень легко попасть в ловушку: кто должен при-
нимать решения и в какой форме объекты должны взаимодейство-
вать друг с другом?

76

Например:

// Плохо [✗]
$document = Document::find(1);

if($document->isPublished()) {
 $content = $document->export(Excel::class);
}

В этом примере происходит запрос данных у объекта, после че-
го на их основе принимается решение, то есть ответственность
фактически переносится на внешний код. Вместо этого лучше пе-
реложить эту ответственность на сам объект: внутри метода мо-
жет быть выброшено исключение или выполнено иное поведе-
ние.

Объект самостоятельно определяет, с кем и как ему взаимо-
действовать — внешний код лишь описывает намерение. Такой
подход повышает модульность и гибкость архитектуры.

// Плохо [✗]
if ($user->isAdmin() || $user->hasRole('manager')) {
 $content = $document->export(Excel::class);
}

// Хорошо [✓]
if ($user->canExport($document)) {
 $content = $document->export(Excel::class);
}

77

Это один из важных принципов, который помогает сделать код
объектов лаконичным, звучит так:

Не спрашивай объект о его данных, чтобы принять реше-
ние — скажи объекту, что делать.

Игра «горячая картошка» научила нас — не задерживать от-
ветственность. А принцип объектно-ориентированного проектиро-
вания — говорить, а не спрашивать; не задавать лишних вопро-
сов, а формулировать намерения. В следующих разделах разбе-
рём конкретные техники, которые позволяют быстрее передать
«мяч» дальше.

78

>_

Без лишних движений
Что отличает настоящего мастера от любителя? Не скорость

или количество работы, а умение делать только то, что действи-
тельно нужно — без лишних действий, без излишних усложне-
ний.

Лишние операции съедают время, отвлекают от сути и увели-
чивают вероятность ошибок. Настоящий мастер знает: чем мень-
ше шагов, тем меньше точек отказа и тем проще менять и улуч-
шать код.

79

Не создавай переменные без необходимости

Каждая переменная — это дополнительный элемент, который
надо держать в голове и читать. Если переменная не улучшает
читаемость и не нужна для повторного использования, от неё сто-
ит отказаться.

// Плохо [✗]
$tmp = $user->name;
echo $tmp;

В этом примере переменная $tmp не даёт никакой дополни-
тельной пользы: она лишь усложняет код добавляя лишнее имя,
которое нужно запомнить.

// Хорошо [✓]
echo $user->name;

Прямой вывод значения из объекта будет проще и понятнее.

Не меняй тип данных для переменной

Переменная может легко поменяться, это заложено в самом
определении переменной, но смена типа в процессе её жизни
означает, что код плохо структурирован. Это снижает предсказуе-
мость и усложняет отладку кода.

80

// Плохо [✗]
function (array $user) {
 $user = new User($user); // Был массив, стал объект
}

Но если оказались в такой ситуации, намного лучше будет
уточнить и дать другое имя:

// Хорошо [✓]
function (array $userData) {
 $user = new User($userData);
}

Лучше всего сразу работать с объектами и при необходимо-
сти — извлекать из них нужные данные, например, преобразовы-
вать в массив:

// Хорошо [✓]
function (User $user) {
 // ...
}

Особенно часто такое изменение можно заметить с перемен-
ными $value, $item и $result, когда конечный результат меня-
ется:

81

// Плохо [✗]
$value = [1, 2, 3]; // массив
$value = (object) $value; // теперь объект
$value = json_encode($value); // теперь строка

Избегай повторных вычислений

Если результат операции нужен несколько раз, лучше вычис-
лить его один раз и сохранить в переменную, чем повторять вы-
числения. Это особенно важно внутри циклов и условий: лишний
вызов метода или обращение к внешнему ресурсу может стоить
дорого.

// Плохо [✗]
foreach ($users as $user) {
 $moon = MoonPhase::forToday();
 $user->notify(new MoonPhaseNotification($moon));
}

Метод MoonPhase::forToday() вызывается на каждой итера-
ции, хотя результат каждый раз одинаковый. В реальной жизни
этот метод может обращаться к внешнему API или выполнять тя-
жёлые вычисления.

82

// Плохо [✗]
foreach ($users as $user) {
 $moon ??= MoonPhase::forToday();

 $user->notify(new MoonPhaseNotification($moon));
}

Этот способ вызова метода выполнится только один раз, но мо-
жет быть неочевиден для неподготовленного читателя. Оператор
??= (null coalescing assignment) означает: «если переменная
$moon ещё не определена или равна null, присвой ей значение».
Хотя это удобно, внутри цикла такая запись может воспринимать-
ся как «магия» — к тому же важно помнить, что переменная с та-
ким именем не должна быть объявлена ранее. Чтобы избежать
недопониманий, лучше сделать намерение явным:

// Хорошо [✓]
$moon = MoonPhase::forToday();

foreach ($users as $user) {
 $user->notify(new MoonPhaseNotification($moon));
}

Сохранение результата в переменную делает код не только чи-
таемее, но и предсказуемее.

83

Используй подходящие структуры данных

Выбирайте правильную структуру данных с самого начала,
чтобы не пришлось преобразовывать и адаптировать её в процес-
се. Часто начинают с базовых типов, например, хранение данных
в массивах кажется очень заманчивым и удобным решением:
можно просто взять нужное значение по ключу. Но затем в коде
начинают появляться конструкции вроде:

// Плохо [✗]
if (isset($user['address']['city'])) {
 $city = $user['address']['city'];
} else {
 $city = 'Неизвестно';
}

Сначала это кажется безобидным. Но когда таких вложенных
ключей становится много, и данные разбросаны по всему коду,
всё усложняется. Вместо того, чтобы описывать логику поведе-
ния, мы продолжаем манипуляции с данными на низком уровне.
Чтобы получить ещё одно значение, снова и снова приходится пи-
сать isset с длинной цепочкой:

84

// Плохо [✗]
if (
 isset($user['address']['city']) &&
 isset($user['preferences']['language'])
) {
 $city = $user['address']['city'];
 $language = $user['preferences']['language'];
}

Такая практика раскрывает детали хранения данных во всех
местах их использования и делает код процедурным: каждый шаг
работы с «сырыми» данными прописывается вручную, вместо то-
го чтобы описать желаемое поведение

Например, фильтрация заказов пользователя по городу при ис-
пользовании массивов выглядит так:

// Плохо [✗]
if (isset($user['id'], $user['address']['city'])) {
 $city = $user['address']['city'];

 $userOrders = array_filter(
 $orders,
 function ($order) use ($user, $city) {
 return $order['user_id'] === $user['id']
 && $order['city'] === $city;
 }
);
} else {
 $userOrders = [];
}

85

Здесь постоянно приходится повторять проверки и раскрывать
детали — где у пользователя лежит город, как устроен заказ. Ес-
ли структура данных изменится, код придётся менять во многих
местах. Это сложно и рискованно. Использование объектов и ин-
капсуляция данных позволяют скрыть детали и упростить взаимо-
действие:

// Хорошо [✓]
$city = $user->address?->city() ?? 'Неизвестно';
$language = $user->preferences?->language ?? 'ru';

Код становится линейным и более читаемым, а изменения
внутренней структуры данных требуют правок только внутри со-
ответствующих классов.

Для полного устранения проверок на null можно применить
паттерн Null Object — объект-заглушку, возвращающий значе-
ния по умолчанию, что дополнительно упрощает код:

// Хорошо [✓]
class NullAddress {
 public function city()
 {
 return 'Неизвестно';
 }
}

$city = $user->address->city();

86

Если же продолжать использовать массивы с isset повсюду,
проект превратится в спагетти из проверок и длинных цепочек
ключей. Это затруднит чтение и увеличит количество ошибок —
они всегда рядом там, где много ручных проверок.

Паттерн Null Object полезен не только для возврата
значений по умолчанию, но и для реализации методов, ко-
торые не должны выполнять никаких действий.

Даже для простых типов данных — строк и чисел — стоит ис-
пользовать объекты. Мы уже ранее рассматривали пример клас-
са Temperature, который скрывает от нас работу с единицами из-
мерения. Теперь рассмотрим аналогичный подход на примере
строк.

Часто обработку строки записывают через вложенные вызовы:

// Плохо [✗]
echo strtoupper(trim(substr($input, 0, 10)));

Код работает, но превращается в «матрёшку» из-за их чрез-
мерного количества вложенных функций. Читать его приходится
справа налево, что совсем не свойственно латинице, на которой
мы пишем код. Это увеличивает когнитивную нагрузку и скрыва-
ет намерение.

Для чтения удобнее сделать класс:

87

// Хорошо [✓]
class Text implements Stringable {
 public function __construct(private string $value) {}

 public function cut(int $length): static
 {
 return new static(substr($this->value, 0, $length));
 }

 public function trim(): static
 {
 return new static(trim($this->value));
 }

 public function value(): string
 {
 return $this->value;
 }

 // ...
}

С таким классом обработка становится читаемой и вырази-
тельной:

echo (new Text($input))
 ->cut(10)
 ->trim()
 ->upper()
 ->value();

Теперь мы читаем цепочку шагов, а не пытаемся расшифро-
вать вложенные функции.

88

Обратите внимание на иммутабельность. Каждый
шаг возвращает новый объект при котором не будет
скрытых побочных эффектов.

Конкатенация строк

Соединение строк с помощью оператора . кажется простым,
но быстро теряет читаемость, особенно при длинных сообщениях
или множестве переменных:

// Плохо [✗]
$message = 'Hello, ' . $name . '! Today is ' . date('Y-m-d');

При большом количестве переменных сложно сразу понять,
как будет выглядеть итоговая строка. Чтобы избежать этого, мож-
но использовать шаблон с подстановкой, например sprintf:

// Хорошо [✓]
$message = sprintf(
 'Hello, %s! Today is %s',
 $name,
 date('Y-m-d')
);

Такой подход делает структуру строки прозрачной и упрощает
её поддержку.

89

Регулярные выражения

Регулярные выражения часто превращаются в «магические
строки»:

// Плохо [✗]
if (preg_match('/^(\d{4})-(\d{2})-(\d{2})$/', $date, $matches))
{
 $year = $matches[1];
 $month = $matches[2];
 $day = $matches[3];
}

Через месяц уже непонятно, что означает каждая группа.
И код начинает становиться путанным и явно обращаться к чис-
ловому индексу.

По возможности, следует использовать именованные группы:

// Хорошо [✓]
if (preg_match(
 '/^(?<year>\d{4})-(?<month>\d{2})-(?<day>\d{2})$/',
 $date,
 $matches
)) {
 $year = $matches['year'];
 $month = $matches['month'];
 $day = $matches['day'];
}

Теперь каждая часть регулярного выражения имеет понятное
имя, и при чтении кода сразу ясно, что именно извлекается.

90

Ссылки делают код хрупким

Передавать переменную по ссылке кажется удобным: функция
сразу меняет её — меньше кода, меньше присваиваний. Вот при-
мер:

// Плохо [✗]
function celsiusToFahrenheit(float &$celsius): void
{
 $celsius = $celsius * 9 / 5 + 32;
}

$temp = 25;
celsiusToFahrenheit($temp);
echo $temp; // 77 — значение изменилось «внутри» функции

На первый взгляд это экономия кода, но есть подвох: после вы-
зова функции уже не понятно, изменится переменная или нет.
Изменения происходят «за кадром», что усложняет чтение и под-
держку кода.

Из-за этого код становится хрупким — любое забытое или
неожиданное изменение может сломать логику программы.

Лучшей практикой считается писать функции, которые прини-
мают значение и возвращают новый результат, не изменяя исход-
ные данные:

91

// Хорошо [✓]
function celsiusToFahrenheit(float $celsius): float
{
 return $celsius * 9 / 5 + 32;
}

$temp = 25;
$tempInFahrenheit = celsiusToFahrenheit($temp);
echo $temp; // 25 — значение не изменилось

Такой код прозрачный и предсказуемый: переменные не меня-
ются «вдруг», а результат возвращается явно и используется там,
где нужно.

Место для расширения

Иногда нужно немного изменить поведение класса — доба-
вить одно условие, поменять одну строчку, подставить другую
функцию. Казалось бы, мелочь, но уже появляются соблазны.

Часто мы думаем: «Создам новый класс, унаследуюсь от старо-
го и переопределю нужный метод». Быстро, просто и вроде акку-
ратно.

Например, есть простой класс который группирует новостные
сводки погоды по городам:

92

$news = [
 "В Москве температура побила рекорд 2013 года",
 "В Москве жарко и солнечно",
 "В Липецке дожди идут без остановки",
 "В Липецке на этой неделе дождливая погода",
];

$grouper = new NewsGrouper($news);
// ['Москва' => [...], 'Липецк' => [...]]

И нужно изменить алгоритм сравнения двух заголовков. Часто
мы думаем: «Создам новый класс, унаследуюсь от старого и пере-
определю нужный метод». Быстро, просто и вроде аккуратно.

Например, так:

class NewsGrouperBySimilarText extends NewsGrouper
{
 protected function similar(string $a, string $b): bool
 {
 similar_text($a, $b, $percent);

 return $percent > 51;
 }
}

93

А затем еще один:

class NewsGrouperBySoundex extends NewsGrouper
{
 protected function similar(string $a, string $b): bool
 {
 return soundex($a) === soundex($b);
 }
}

На первый взгляд — разумно. Но через месяц таких потомков
будет уже пять, потом десять. Затем понадобится изменить в ча-
сти наследников нормализацию имен для городов. Кто-то добавит
изменения в родительский класс, чтобы «не трогать потомков» —
и структура начинает шататься.

Вы смотрите на этот зоопарк и задаётесь вопросом: где живёт
нужная логика? В родителе? В потомке? В обоих? В каком из пят-
надцати классов?

Всё стало сложнее, чем было. Хотя вы просто хотели добавить
одно небольшое изменение.

Почему так происходит? Потому что в коде нет места для из-
менений без разрушений. Нет точки расширения — шва (seam).
В результате единственный способ изменить поведение — насле-
дование, переопределение и копипастинг.

Вместо наследования можно сделать в классе точку расшире-
ния — шов, который позволяет изменить поведение без правки су-
ществующего кода. Например, передать колбэк или другой объ-
ект. Главное — не трогать внутренности класса, всё меняется сна-
ружи.

94

Простой пример:

class NewsGrouper {
 public function groupBy(callable $similar): static {
 $this->similar = $similar;
 return $this;
 }
}

Теперь вы определяете, как именно форматировать отчёт:

$grouper = new NewsGrouper($news);
$grouper->groupBy(function (string $a, string $b): bool {
 similar_text($a, $b, $percent);

 return $percent > 51;
});

Никаких наследников. Всё поведение — в одном месте. Тести-
ровать такой класс легко, расширять — ещё проще.

Когда его будет недостаточно или он разрастётся, замените
callable на интерфейс и передавайте объект, реализующий его.

$grouper = new NewsGrouper($news);
$groups = $grouper->groupBy(new SimilarComparator());

Идея очень проста: Не спешите писать extends. Спросите се-
бя: можно ли здесь оставить шов? Если да — вы только что сдела-
ли код гибче, проще и чище.

95

>_

Ранний выход
Когда рассказываешь историю и постоянно перебиваешь себя

новыми деталями, слушатель теряется, забывает, с чего всё нача-
лось и ему становится всё труднее следить за ходом мысли. В ито-
ге рассказ превращается в запутанную смесь, которая теряет
смысл.

В программировании аналогичная ситуация возникает, когда
в функции слишком глубоко вкладываются условия и циклы. Это
снижает читаемость и усложняет понимание логики.

96

В прошлой главе мы говорили о важности отдавать результат
как можно быстрее. Одним из препятствий для этого является
глубокая вложенность кода. Часто мы мысленно строим блок-схе-
му:

«Если X равно Y, тогда выполнить действие, если Y равно
Z, выполнить другое действие» — и так далее.

Пример глубокой вложенности:

// Плохо [✗]
if($condition) { // уровень 1
 foreach($users as $user) { // уровень 2
 if($user->isActive()) { // уровень 3
 // Обработка
 }
 }
}

Каждый новый уровень вложенности усложняет чтение —
нелинейно, а экспоненциально. На третьем уровне вложенности
уже приходится держать в голове весь предыдущий контекст. Это
утомляет и увеличивает когнитивную нагрузку.

Стоит стремиться минимизировать глубину вложенности
и предпочитать располагать основные сценарии выполнения
функции без вложенных условий.

97

// Плохо [✗]
if ($condition) {
 // много кода
} else {
 throw new Exception('Условие не выполнено');
}

Лучше написать так:

if (! $condition) {
 throw new Exception('Условие не выполнено');
}

// много кода

Это называется ранним выходом (early return). Мы сразу об-
рабатываем граничные случаи, а затем плавно движемся по ос-
новному сценарию — без вложенности и лишних условий.

Такой подход упрощает чтение и понимание кода, делает его
более структурированным и лёгким для поддержки. Ранний вы-
ход актуален не только для исключений, но и для возвращений
значений в методах, например:

98

// Плохо [✗]
public function hasAssign(User $user): bool
{
 if ($condition) {
 return // ... много кода;
 }
 return false;
}

Основной сценарий спрятан внутри условия. Лучше развер-
нуть его наружу:

// Хорошо [✓]
public function hasAssign(User $user): bool
{
 if (! $condition) {
 return false;
 }

 // ... много кода
 return $result;
}

В хорошем варианте мы сначала отсекаем негативные случаи,
а затем идём по основному сценарию, который расположен в ос-
новной части функции. Это делает код чище и проще для понима-
ния.

99

Ранний выход полезен не только для условий, но и для циклов:

// Плохо [✗]
foreach ($orders as $order) {
 if ($order->isPaid()) {
 foreach ($order->items as $item) {
 if ($item->isInStock()) {
 // обработка
 }
 }
 }
}

Можно использовать continue для выхода из итерации:

// Хорошо [✓]
foreach ($orders as $order) {
 if (! $order->isPaid()) {
 continue;
 }

 foreach ($order->items as $item) {
 if (! $item->isInStock()) {
 continue;
 }
 // обработка
 }
}

100

Избегайте использования else

Отдельного упоминания требует оператор else. Сам по себе
он не является злом, но часто его использование указывает
на неудачную структуру кода и отличным решением будет мини-
мизировать его использование, заменяя его ранним выходом. То-
гда вместо громоздких условных блоков будут простые и прямоли-
нейные конструкции.

Рассмотрим метод проверки доступа:

// Плохо [✗]
public function hasAccess(User $user): bool {
 if (!$user->isBanned()) {
 if ($user->isAdmin()) {
 // Доступ разрешён: админ.
 return true;
 } else {
 if ($user->isGranted(GRANT::EDIT)) {
 // Доступ разрешён: может редактировать.
 return true;
 } else {
 // Доступ запрещён: нет нужных прав.
 return false;
 }

 return false;
 }
 } else {
 // Доступ запрещён: пользователь заблокирован.
 return false;
 }
}

101

Вариант без else — чище и проще:

// Хорошо [✓]
public function hasAccess(User $user): bool
{
 if ($user->isBanned()) {
 // Пользователь заблокирован
 return false;
 }

 if ($user->isAdmin()) {
 // Пользователь является администратором
 return true;
 }

 // Пользователь имеет разрешение на редактирование
 return $user->isGranted(GRANT::EDIT);
}

Хороший код, как хороший рассказ, не уводит читателя в сто-
рону. Ранний выход — один из самых эффективных приёмов. При-
меняйте его — и ваши функции станут яснее, проще и приятнее
для чтения.

102

>_

Управляющие
конструкции

Хороший код строится из простых и понятных блоков. Мы уже
научились избегать лишней вложенности и выходить из метода
как можно раньше. Но есть ещё одна область, где может скры-
ваться неявная сложность, способная незаметно разрастаться —
это управляющие конструкции.

103

В живом проекте требования неизменно растут. Это нормаль-
но: бизнес двигается, пользователи чего-то хотят, а нам приходит-
ся подкручивать код, чтобы он всё это выдержал. Но вместе с тре-
бованиями растёт и сложность. И одна из самых тихих, но опас-
ных зон роста — это управляющие конструкции.

Они сначала выглядят безобидно. Один if, один while, пара
сравнений. Всё понятно. Но потом приходит ещё один параметр.
Потом фильтр. Потом проверка статуса, даты, порогового значе-
ния. И вроде бы всё ещё нормально — но код уже не читается.

Посмотрим на конкретный пример:

while (File::where('status', '=', File::STATUS_NEW)->count()) {
 // ...
}

На первый взгляд всё просто и понятно: пока есть новые фай-
лы — продолжаем обработку. Всё логично.

Через пару недель появляется задача обработать только фай-
лы, связанные с определённым событием:

while (File::where('event_guid', '=', $event->docu-
ment_id)->where('status', '=', File::STATUS_NEW)->count()) {
 // ...
}

104

А ещё через день кто-то убирает лишние = из условий. Или до-
бавляет:

- while (File::query()->where('event_guid', '=', $event->docu-
ment_id)->where('status', '=', File::STATUS_NEW)->count()) {
+ while (File::query()->where('event_guid', $event->docu-
ment_id)->where('status', File::STATUS_NEW)->count()) {
 // ...
}

Такой git diff неудобно читать: сложно сразу заметить, что
именно поменялось. Вам не хочется разбираться, что конкретно
изменилось, только побыстрее пройти мимо.

Но и более развернутый вариант с переносами строк — лишь
чуть улучшает diff, но не облегчает жизнь при отладке:

while (
 File::where('event_guid', $event->document_id)
 ->where('status', File::STATUS_NEW)
 ->count()
) {
 // ...
}

Допустим, мы видим эту часть кода, как нам узнать, сколько
записей вернулось? Придётся скопировать весь запрос, передать
его в dd() или функцию логирования.

105

А если условие будет сложнее, чем простая проверка на нену-
левое значение, например нужно сравнить количество с порогом,
возвращаемым из другого метода? Тогда нам придётся копиро-
вать уже дважды:

$count = File::where('event_guid', $event->document_id)
 ->where('status', File::STATUS_NEW)
 ->count();

dd([
 'count' => $count,
 'secret' => $secret,
]);

while (
 File::query()
 ->where('event_guid', $event->document_id)
 ->where('status', File::STATUS_NEW)
 ->count()
 >= $secret
) {
 // ...
}

106

Вместо этого воспользуемся ранним выходом, с которым
мы познакомились ранее, и вынесем условие:

while (true) {
 $count = File::where('event_guid', $event->document_id)
 ->where('status', File::STATUS_NEW)
 ->count();

 if ($count <= $secret) {
 break;
 }

 // ...
}

А ещё лучше — спрятать проверку, как только условие пере-
стаёт быть тривиальным — вынести его в отдельный метод с гово-
рящим именем:

// Хорошо [✓]
while ($this->hasTooManyNewFiles()) {
 // ...
}

107

И где-нибудь в коде:

private function newFilesQuery()
{
 return File::where('event_guid', $this->event->document_id)
 ->where('status', File::STATUS_NEW);
}

private function hasTooManyNewFiles(): bool
{
 return $this->newFilesQuery()->count()
 > $this->threshold();
}

Избегай «мудрёных» решений

Сложные условия не всегда находятся только в if или while.
Иногда они маскируются под «краткость» — особенно в тернар-
ных или null coalescing‑выражениях.

// Плохо [✗]
return $cache ?: ($computed ?: $default);

Трудно сходу сказать, что вернётся в каждой ситуации. Крат-
кость не самоцель — важнее, чтобы код был понятен с первого
взгляда:

108

// Хорошо [✓]
if ($cache) {
 return $cache;
}

if ($computed) {
 return $computed;
}

return $default;

Присваивания в условиях

Иногда хочется быть «умным». Сделать красиво, коротко, вы-
разительно. Одной строкой. Как в старых учебниках:

// Плохо [✗]
if ($user = $this->getUser()) {
 // ...
}

Метод вызвали, результат проверили, в переменную записа-
ли — три в одном. Сэкономили строку. Но только не время других
разработчиков. Потому что наш смысл уехал в сторону, мы созда-
ли дополнительную когнитивную нагрузку. Продолжим пример:

109

// Плохо [✗]
if ($user = $this->getUser()) {
 $this->sendNotification($user);
}

На беглом просмотре кажется, что мы сравниваем $user
с чем-то. Только приглядевшись, понимаешь — ага, тут присваи-
вание, и оно возвращает значение. Но это нужно замечать.

А если переменная $user объявлена где-то выше? Нужно дер-
жать в голове, что здесь происходит переопределение, и это
влияет на остальной код.

Уместно будет не создавать неявных сложностей и всегда раз-
делять: сначала присвоение, потом условие.

// Хорошо [✓]
$user = $this->getUser();

if ($user !== null) {
 $this->sendNotification($user);
}

110

Отрицания в условиях

Иногда нужно проверить, что что-то не произошло. Пользо-
ватель не авторизован, не найден, не соответствует. Самый оче-
видный путь — добавление знака отрицания ! в условие:

// Плохо [✗]
if (!$user->isActive()) {
 // ...
}

С технической точки зрения это работает, но с точки зрения
читаемости — это проблема. Приходится мысленно инвертиро-
вать название метода, а это добавляет когнитивную нагруз-
ку. Гораздо понятнее, когда условие говорит само за себя, без от-
рицаний:

// Хорошо [✓]
if ($user->isInactive()) {
 // ...
}

Конечно, может быть, такого метода изначально нет. Но если
такое условие встречается часто, стоит добавить его — даже если
он просто возвращает отрицание другого метода:

111

public function isInactive(): bool
{
 return !$this->isActive();
}

То же самое касается переменных:

// Плохо [✗]
if (!$hasErrors) {
 // ...
}

В голове снова приходится прокручивать: «если не есть
ошибки, тогда продолжить». Лучше сделать переменную с по-
ложительным смыслом:

// Хорошо [✓]
if ($isValid) {
 // ...
}

112

>_

Аргументы
Чем меньше, тем лучше

Методы с большим числом аргументов сложнее читать, тести-
ровать и использовать. Правило трёх: метод не должен прини-
мать больше трёх параметров. Если больше — разделите.

113

// Плохо [✗]
$fileSystem->write(
 '/path/to/file.txt', // Путь до файла
 true, // Перезапись файла
 'Пример данных', // Содержимое
 'UTF-8', // Кодировка
 true // Включаем логирование
);

Если у метода четыре, пять, а то и шесть параметров — стано-
вится сложно понять, что есть что, в каком порядке это переда-
вать и как вообще это использовать. Особенно это усугубляется,
когда имена аргументов очень похожи.

Даже если вы напишете великолепный комментарий перед ме-
тодом, человек читающий код будет вынужден каждый раз
к нему возвращаться.

Необязательные аргументы — в конец

При проектировании методов порядок аргументов имеет зна-
чение. Один из самых простых и эффективных способов сделать
его чище — располагать необязательные параметры в конце.

114

Рассмотрим пример:

// Плохо [✗]
$fileSystem->write(
 '/path/to/file.txt', // Путь до файла
 null, // Перезапись файла
 'Пример данных', // Содержимое
);

Чтобы просто записать файл, нам приходится явно указывать
null — значение, которое на самом деле нам не нужно.

Куда лучше такой вариант:

// Хорошо [✓]
$fileSystem->write(
 '/path/to/file.txt', // Путь до файла
 'Пример данных', // Содержимое
);

А если нужно изменить поведение по умолчанию, мы просто
добавим третий параметр:

// Плохо [✗]
$fileSystem->write(
 '/path/to/file.txt', // Путь до файла
 'Пример данных', // Содержимое
 true, // Перезапись файла
);

115

В этом случае метод будет принимать только обязательные па-
раметры, а необязательные будут в конце. Это делает код чище
и понятнее. Так как их можно не указывать, если они не нужны.

Что делать, если аргументов много

Иногда метод требует не один-два, а сразу пять или больше па-
раметров. Передавать всё списком в строго заданном порядке —
не лучшая идея. Легко перепутать аргументы, особенно если они
одного типа. К тому же вызов такого метода выглядит пугающе
и плохо читается.

Первое, что приходит на ум это использование ассоциативного
массива:

// Плохо [✗]
$fileSystem->write(
 '/path/to/file.txt',
 'Пример данных',
 [
 'encoding' => 'UTF-8',
 'overwrite' => true,
 'debug' => true,
]
);

Это отвратительный способ. Такой подход не даёт информации
о том, какие параметры действительно ожидаются, и не позволя-
ет IDE подсказывать возможные опции. Более того, здесь нет про-
верки типов — любые ошибки проявятся только во время выпол-
нения. Это усложняет отладку и увеличивает вероятность багов.

116

Другая популярная попытка — создать объект, инкапсулирую-
щий значения. Например:

$config = new Config($encoding, $overwrite, $debug);

// Пример использования
$fileSystem->write(
 '/path/to/file.txt', // Путь до файла
 null, // Перезапись файла
 $config, // Объект с метаданными
);

Это лишь видимость решения. Мы создали объект, который
сам по себе бессмысленен: он не содержит поведения и не добав-
ляет никакой бизнес-логики. Фактически, это тот же массив,
только завернутый в класс. Польза от него — разве что автодопол-
нение в IDE. Но теперь мы должны создавать или таскать этот
объект везде, где вызываем метод write, что только усложня-
ет код.

Если язык поддерживает именованные аргументы и их количе-
ство очень-очень ограничено, стоит использовать их:

$fileSystem->write(
 '/path/to/file.txt',
 'Пример данных',
 debug: true, // Именованный параметр
);

Это уже лучше: вызов становится самодокументируемым, и по-
рядок аргументов не имеет значения.

117

Но есть гораздо более выразительный и управляемый спо-
соб — fluent-интерфейс. Это объект, методы которого возвраща-
ют самого себя, позволяя вызывать их цепочкой:

// Хорошо [✓]
$fileSystem
 ->path('/path/to/file.txt')
 ->encoding('UTF-8')
 ->overwrite(true)
 ->debug(true)
 ->write('Пример данных');

В этом подходе сразу видно, что происходит. Каждый шаг отде-
лён, названия методов описывают действия, и вся цепочка чита-
ется как связный набор настроек. Такой стиль легко расширяет-
ся, хорошо покрывается тестами и открывает дорогу к более гиб-
кой архитектуре.

Булевы аргументы

Стоит отдельно упомянуть, что многие разработчики и извест-
ные авторы, например, Роберт Мартин — автор «Чистого кода»,
считают использование булевых аргументов признаком плохого
тона. И предлагают создавать отдельный метод вместо передачи
булева значения.

118

Например, вместо:

$fileSystem->write(
 '/path/to/file.txt', // Путь до файла
 'Пример данных', // Содержимое
 true // перезаписать файл
);

Предпочтительнее сделать:

$fileSystem->reWrite(
 '/path/to/file.txt', // Путь до файла
 'Пример данных', // Содержимое
);

Однако я бы поспорил с этой категоричной рекомендацией.
В ряде случаев булевый параметр — вполне удобный и компакт-
ный способ управления поведением метода, особенно если код
остаётся понятным.

Но если булевый аргумент существенно меняет поведение
метода, превращая его фактически в две разные функции — то-
гда действительно стоит рассмотреть разделение.

Предпочитайте объекты

Строки, булевы, числа очень удобны в начале разработки,
но с течением времени логика усложняется, и эти простые значе-
ния не справляются.

119

Что раньше было флагом true, теперь требует дополнитель-
ных условий: если админ, если включён режим отладки, если
пользователь подтвердил e-mail.

Скалярные значения не умеют расти. Они не подстраиваются
под новые требования. А объект — может. Он расширяется мето-
дами, валидирует себя, хранит контекст и смысл.

Рассмотрим пример списка исключений. Вместо того чтобы пе-
редавать набор строк, лучше использовать объект, который сам
знает, как представлять себя:

// Плохо [✗]
class ExcludeList
{
 public function add(
 string $itemName,
 string $itemIdentityName,
 string $itemIdentityValue
): void
 {
 // ...
 }

 public function has(
 string $itemName,
 string $itemIdentityName,
 string $itemIdentityValue
): bool
 {
 // ...
 }
}

120

Вместо того чтобы передавать несколько строковых значений,
можно использовать уже существующий объект или создать но-
вый, который сам решит, как обработать добавление и поиск эле-
мента:

// Хорошо [✓]
class ExcludeList
{
 public function add(Model $model): static
 {
 $key = $model->getKey();
 // ...
 }

 public function has(Model $model): bool
 {
 $key = $model->getKey();
 // ...
 }
}

Теперь метод add и метод has работают с объектами,
а не с простыми значениями. Это упрощает добавление новых па-
раметров и изменений в модель, не затрагивая логику работы ме-
тодов, а также облегчает тестирование.

121

>_

Обработка ошибок
Каждый раз, когда вы пишете код, вы должны помнить о том,

что он может сломаться. Ошибки могут возникать по самым раз-
ным причинам: от неправильного ввода данных до сбоев в работе
внешних сервисов. Поэтому важно правильно обрабатывать ошиб-
ки, чтобы ваш код не падал и не оставлял пользователей в недо-
умении.

122

Исключения

Как правило, исключения, которые вы ожидаете и планируете
обрабатывать заранее, должны наследоваться от Exception.
Те же исключения, которые вы создаёте, но обработка которых
необязательна или не предусмотрена, — лучше наследовать
от \RuntimeException.

Например, это ошибки, возникающие из-за неверного состоя-
ния программы, неправильного использования API или логиче-
ских ошибок.

Это связано с понятием unchecked exceptions — исключе-
ний, которые не требуют обязательной обработки. Они не могут
быть предсказаны заранее и проявляются только во время выпол-
нения программы.

В PHP, в отличие от некоторых других языков, нет строгого раз-
деления на checked и unchecked исключения, но по смыслу Run-
timeException относится именно к категории unchecked.

Если ваш класс наследуется от Exception и не обработан, ин-
струменты вроде PhpStorm и статические анализаторы могут об-
ратить на это внимание, предупреждая, что исключение не пере-
хвачено, в то время как исключения, наследуемые от RuntimeEx-
ception, в этом плане рассматриваются иначе.

Скрытое замалчивание

Абсолютно ни в коем случае нельзя «поймать и забыть» исклю-
чение. Пустой catch или молчаливое подавление ошибок:

123

// Плохо [✗]
try {
 $this->calculate($data);
} catch (\Throwable $throwable) {
 // ничего не делаем
}

Пример — «смертельно» опасен: проблема произошла, но ни-
кто об этом не узнает. Главное — не потерять факт ошибки. Так
делать нельзя: ошибка уходит в тень, вы теряете информацию.

В некоторых случаях, чтобы избежать падения приложения,
можно вернуть резервный результат:

// Плохо [✗]
try {
 $message = $this->greeting($time);
} catch (ExternalApiException $exception) {
 $message = 'Добро пожаловать!';
}

Иногда ошибку можно безопасно обработать без прерывания
выполнения, но её обязательно нужно залогировать для последу-
ющего анализа:

124

// Хорошо [✓]
try {
 $message = $this->greeting($time);
} catch (ExternalApiException $exception) {
 Log::warning('Не удалось получить приветствие', [
 'arguments' => ['time' => $time],
 'exception' => $exception,
]);

 $message = 'Добро пожаловать!';
}

Ясные ошибки

Сообщения об ошибках должны быть максимально информа-
тивными и конкретными. Вместо абстрактного «RuntimeExcep-
tion» нужно описывать, что именно произошло и где:

// Плохо [✗]
foreach ($users => $user) {
 if ($user->isActive()) {
 throw new Exception(
 'Пользователь должен быть неактивен для удаления'
);
 }
}

Невозможно понять, какой именно пользователь вызвал ошиб-
ку. Чтобы исправить, нужно добавить контекст:

125

foreach ($users as $user) {
 if ($user->isActive()) {
 throw new RuntimeException(sprintf(
 'Нельзя удалить активного пользователя: ID=%d',
 $user->id,
));
 }
}

Следи за логами

Чтобы не пропускать серьёзные проблемы, все необработан-
ные исключения нужно обязательно фиксировать в логах. Ло-
ги — это ваша единственная возможность узнать, что пошло
не так, когда программа работает в производственной среде.

Обычно ошибки записывают в файл на диске и/или отправля-
ют во внешний сервис. Но важно это делать последовательно. По-
смотрите на пример:

try {
 // ...
} catch (Throwable $e) {
 file_put_contents('log-process.txt', 'Ошибка #5');
}

126

В другом месте:

try {
 // ...
} catch (Throwable $e) {
 file_put_contents('log-user.txt', json_encode([
 'line' => $e->getLine(),
 'status' => 500,
]));
}

В этом примере исключения обработаны, но их структура абсо-
лютно разная: в одном — формат JSON, а в другом — строка. Это
не позволит автоматически проанализировать их и создаст лиш-
нюю когнитивную нагрузку.

Вместо этого используйте единую точку для логирования:

function logException(Throwable $e): void
{
 $message = sprintf(
 "[%s] %s in %s on line %d\nStack trace:\n%s\n\n",
 date('Y-m-d H:i:s'),
 $e->getMessage(),
 $e->getFile(),
 $e->getLine(),
 $e->getTraceAsString()
);

 //
}

127

А ещё лучше — использовать современный подход с PSR-3-сов-
местимыми логгерами, такими как Monolog. Он поддерживает
уровни логирования, форматирование, хендлеры и интеграцию
с внешними системами.

Важно также не писать всё бесконтрольно в один файл, так
как его содержание будет расти. Это может вылиться в то, что
любимая IDE или редактор не смогут открыть файл на 30 ГБ,
не говоря уже о том, чтобы осуществить эффективный поиск
по нему. Чтобы такого не произошло, можно настроить ротацию
логов — например, чтобы каждый новый день старый лог пере-
именовывался и архивировался, а спустя некоторое время удалял-
ся. Так у вас будет меньше мусорных данных, которые не нужны
в контексте.

Но просто собирать логи мало. Нужно, чтобы вы сразу узнава-
ли о проблемах. Для этого подключают централизованные систе-
мы мониторинга: Sentry, Graylog, ELK или другие. Они собирают
все ошибки в одном месте, позволяют группировать и отслежи-
вать повторяющиеся баги, а при необходимости — шлют оповеще-
ния на почту или в мессенджеры.

Отладка

Среди разработчиков распространено мнение, что пошаговая
отладка, например, с помощью Xdebug, — признак хорошего спе-
циалиста. Выглядит это следующим образом: разработчик ставит
точку остановки, затем начинает «шагать» по коду, наблюдает
за значениями переменных, отслеживает условные переходы —
словно читает чужие мысли. Якобы именно так приходит понима-
ние, «как всё устроено».

https://github.com/Seldaek/monolog

128

Но позвольте — если вам нужно так делать, значит, что-то
пошло не так!

Это не норма. Значит, ваш код неочевиден, сложен и плохо
структурирован.

Настоящая причина, по которой вам нужно пошагово прохо-
дить каждую строчку, в том, что вы не понимаете, что происхо-
дит в системе. И не потому что вы недостаточно умны, а потому
что код запутан. В нём всё связано со всем, всё влияет на всё,
и даже чтобы просто проверить, вам приходится запускать сер-
вер, кликать через интерфейс и ставить точку остановки где-то
внутри shouldGoOutside().

Представим, что система должна вернуть рекомендацию поль-
зователю — выходить ли на улицу:

129

// Плохо [✗]
function shouldGoOutside(array $weather): bool
{
 return ! (function () use (&$weather, $check) {
 try {
 extract($weather, EXTR_SKIP);
 if ($this->check($temp, -10, 35, function ($t) {
 return $this->isExtremeTemperature($t);
 })) {
 return false;
 }

 // ...

 foreach ($alerts as $carry) {
 try {
 return $this->shouldPanic($carry);
 } catch (Throwable) {}
 }
 } catch (Throwable $throwable) {
 Log::error($throwable);
 return false;
 }
 })();
}

Здесь есть и вложенные блоки try-catch, и if внутри if,
и цикл с ловлей исключений «внутри» функции. Без отладки труд-
но понять, за какой именно шаг «цепи» падает — внешняя обра-
ботка или внутренняя.

130

А теперь посмотрите, как это должно быть устроено:

final class DecisionEngine
{
 /**
 * @param WeatherRule[] $rules
 */
 public function __construct(
 private array $rules
) {}

 public function shouldGoOutside(array $weather): bool
 {
 foreach ($this->rules as $rule) {
 if (! $rule->passes($weather)) {
 return false;
 }
 }

 return true;
 }
}

Всё. Логика выделена, изолирована, читается за секунду.

131

Вы можете протестировать её без всякого дебаггера в тестах:

$engine = new DecisionEngine([
 new TemperatureRule(),
 new WindRule(),
 new PrecipitationRule(),
 new NoSevereStormAlertRule(),
]);

$engine->shouldGoOutside([
 'temperature' => 20,
 'wind' => 5,
 'precipitation' => 10,
 'alerts' => [],
]);

А если нужно что-то проверить, то мы можем легко добавить
тест:

$rule = new WindRule();

$this->assertTrue($rule->passes(['wind' => 10]));
$this->assertFalse($rule->passes(['wind' => 25]));
$this->assertTrue($rule->passes([])); // Ветра нет — нормально

Отладка нужна, когда вы не можете локализовать поведение.
В хорошо структурированном коде вместо Xdebug — вы пишете
->assertTrue(...).

132

>_

Комментарии
Комментарий — это способ передачи мысли не компьютеру, а

человеку, который в будущем будет его читать и работать с ним.

Полезный комментарий объясняет, почему написан тот или
иной код, а не дублирует очевидное. Комментарии должны рас-
крывать контекст и мотив, а не пересказывать строку кода.

133

// Плохо [✗]
// Устанавливаем переменную в 5
$counter = 5;

// Добавить 1 к счётчику
$counter++;

Здесь комментарии не добавляют никакой ценности — код
и так очевиден. Они просто повторяют написанное и засоряют
пространство, вместо того чтобы объяснить логику или замысел.

// Хорошо [✓]
// Начинаем с 5, потому что первые 5 пользователей
// уже были зарегистрированы вручную
$counter = 5;

// Увеличиваем счётчик, потому что обработан новый заказ
$counter++;

Здесь комментарии оправдывают поведение. Они отвечают
на вопрос: «Почему 5?» и «Почему инкремент?» Это контекст, ко-
торый не видно из самого кода. Именно в этом — ценность ком-
ментария.

Иногда комментарий вообще не нужен — достаточно хорошо
подобранного имени переменной:

134

// Плохо [✗]
// date for yesterday
$date = date('Y-m-d', strtotime('yesterday'));

Имя переменной — это уже встроенный комментарий. Исполь-
зуй силу языка. Не пиши объяснений в воздухе — дай имя поня-
тию.

// Хорошо [✓]
$yesterday = date('Y-m-d', strtotime('yesterday'));

Это намного лучше любого комментария.

Обновляйте комментарии вместе с кодом

Если вы меняете логику, обязательно обновите комментарий.
Иначе он превращается в ложь, а ложь хуже полного отсутствия
информации.

// Плохо [✗]
// Этот метод работает с MySQL 5.7
// поэтому не использует JSON‑функции
public function processData($data)
{
 // Код, который уже использует JSON‑функции
}

Комментарий устарел, но код остался. Теперь он вводит в за-
блуждение. Либо обновите комментарий, либо удалите его.

135

Также при выполнении срочной задачи мы заранее понимаем,
что код может быть неидеальным или потребовать доработок,
и тем самым как бы заранее оправдываем это через:

// TODO: временное решение, нужно переписать
// FIXME: костыль, но работает
// HACK: не очень красиво, но быстро

Вместо комментария-оправдания исправьте код. Если времени
нет — создайте задачу в трекере. Или настройте инструмент авто-
матизации, который по ключевым словам будет создавать новые
задачи.

Многострочные комментарии

Многострочные комментарии — это особый жанр. Они долж-
ны быть не просто информативными, но и визуально удобными.
Чем легче комментарий воспринимается глазом, тем быстрее
программист понимает код.

Часто можно встретить такой вариант:

// Плохо [✗]

/**
 * Сохраняем пользователя сразу,
 * чтобы избежать потери данных, ведь последующие
 * действия могут вызвать исключение.
 * Ранее делали событие, но было ненадёжно.
 */

136

Проблема здесь в том, что строки разбиты случайно: одна
слишком короткая, другая — длинная. В итоге комментарий вы-
глядит тяжело и рвано.

Гораздо лучше, чтобы каждая последующая строка была та-
кой же длины или чуть компактнее предыдущей. Комментарий
тогда превратится в лестницу, по которой глаз легко скользит
вниз.

Такой приём превращает комментарий в ступеньки, по кото-
рым взгляд движется естественно:

// Хорошо [✓]

/**
 * Сохраняем пользователя сразу, чтобы избежать потери данных,
 * ведь последующие действия могут вызвать исключение.
 * Ранее делали событие, но было ненадёжно.
 */

Комментарий с примером

Комментарии в конфигурационных файлах часто страдают
от излишней абстрактности. Например, разработчику нужно ука-
зать, где находятся SVG-иконки приложения:

137

/*
 |--
Icons Path
Provide the path from your app to your SVG icons directory.
 */

'icons' => [],

Возникают вопросы: каков формат массива, путь полный или
относительный? Без конкретного примера разработчик вынуж-
ден угадывать или спрашивать у коллег, что приводит к дополни-
тельному времени и несамостоятельности. Чтобы исправить ситу-
ацию, нужно добавить пример использования:

/*
 |--
Icons Path
Provide the path from your app to your SVG icons directory.
Example: ['fa' => storage_path('app/fontawesome')]
 */

'icons' => [],

Теперь комментарий не только объясняет идею, но и даёт гото-
вую основу для настройки. Абстрактная фраза превратилась
в конкретное знание, и разработчику не нужно гадать.

138

>_

Не бойся удалять код
Удаление кода так же важно, как и его написание. Это акт за-

боты о проекте. Вы следите за его чистотой, избавляетесь от
ненужного, делаете структуру понятнее и помогаете другим быст-
рее разобраться, как всё устроено. Это ни в коем случае не пора-
жение, это не «зря писал». Это развитие. Это значит, что вы пере-
росли старое решение, нашли лучшее или поняли, что оно боль-
ше не нужно.

139

Последовательность важнее

Если вы внимательно следовали предыдущим главам, вы уже
начали менять свой код: упрощать, переименовывать, разделять
ответственность. И вот тут появляется важный момент: последо-
вательность. Когда код меняется, названия устаревают. Логика
перерастает своё оформление — нужно адаптироваться как мож-
но быстрее и без страха.

Когда-то метод validate() проверял логин и пароль. Сегодня
он уже проверяет два токена, куки и капчу. А называется всё ещё
validate(). И это вводит в заблуждение. Сегодняшнему разра-
ботчику нужно читать реализацию, потому что по названию уже
ничего не понятно.

Код меняется, и ему нужно давать возможность изменяться —
в том числе через переименование и удаление. Не стоит остав-
лять старое имя «ради совместимости» или из лени. Это путь
к путанице. Пусть код выглядит так, как он работает сейчас,
а не когда-то давно.

Избавляйся от закомментированного кода

Бывало ли у вас: «Пока закомментирую, может, потом приго-
дится»? Или: «Это временно, на выходных уберу»?

Проходит неделя. Потом две. Потом месяц. И вот закомменти-
рованный кусок кода перекочевывает из релиза в релиз — как
будто это часть системы. Только на деле — это мусор, который
мы сами оставили.

140

// Плохо [✗]
public function generateAccessToken(): string
{
 $userId = $this->user->getKey(),
 // Log::info("Generating token for user: $userId");

 $payload = [
 // 'role' => 'user',
 // 'aud' => 'my-app-client',
 'sub' => $userId,
 'exp' => $this->calculateExpiration(),
];

 // Старый способ (оставлен на всякий случай)
 // $token = base64_encode(json_encode($payload));

 $token = $this->signToken($payload);

 // echo "Generated token: $token";
 return $token;

 // Всё, что ниже — никогда не выполнится
 $this->logTokenGeneration($userId, $token);
 // $refreshToken = $this->generateRefreshToken($userId);
 // $this->storeRefreshToken($userId, $refreshToken);
}

Во-первых, шум. Когда открываешь файл и видишь кучу заком-
ментированного кода, начинаешь гадать: это ещё работает? Это
было важно? А может, наоборот, это старая логика, которую уже
заменили? Такой шум мешает сосредоточиться и понять, какой
код сейчас «правильный».

141

Во-вторых, портится дисциплина. Стоит один раз оставить за-
комментированный фрагмент — и понеслось. Один, второй…
В проекте появляются простыни закомментированных строк, ко-
торые никто не трогает, но все боятся удалить. «А вдруг кто-то
оставил это не просто так?..» Так команда привыкает к мысли: за-
хламлять код — это нормально.

Нет, это не нормально. Вот как должно быть:

// Хорошо [✓]
public function generateAccessToken(): string
{
 return $this->signToken([
 'sub' => $this->user->getKey(),
 'exp' => $this->calculateExpiration(),
]);
}

Коротко. Просто. Чисто. Только то, что нужно. А всё остальное
уже сохранено в Git, и если понадобится — всегда можно восста-
новить.

Без тестов страшно

Когда в проекте нет автоматических тестов, появляется страх.
Страх, что твои изменения могут сломать что-то важное, о чём
ты даже не вспомнишь, пока не увидишь ошибку в продакшене
или не получишь жалобу от пользователя.

142

Этот страх подталкивает к самому худшему — к FDD (Fear Dri-
ven Development), когда ты боишься что-то менять, боишься уда-
лять устаревший код, боишься переименовывать методы и даже
боишься добавить новую фичу.

Без тестов ты вынужден постоянно держать в голове кучу дета-
лей — как работает старый функционал, какие побочные эффек-
ты могут быть у твоих изменений, где спрятаны зависимости
и что сломается, если изменить этот кусок.

Из-за этого возникает нервозность, замедляется работа, а код
превращается в хаос, потому что проще не трогать, чем прове-
рить.

Поэтому инвестируй в своё спокойствие — пиши тесты. Они
освободят тебя от страха, позволят спокойно менять и улучшать
код без риска всё сломать.

143

>_

Тесты
Слово тестирование испортили и изуродовали. Потому что

часто под этим подразумевают ручную проверку, что задача, ко-
торую делал разработчик, работает как задумано после измене-
ний. Это не то, что нужно разработчику — нам нужен контроль
качества.

Многие до сих пор думают, что тестированием занимается
кто-то другой: тестировщик, QA-инженер, автоматизатор или ве-
ликий господин начальник. Это не так.

144

Ты — разработчик, и именно ты становишься первым тестиров-
щиком своего кода. Ты запускаешь приложение, проверяешь, что
оно работает, затем вносишь изменения и снова убеждаешься,
что всё работает как прежде. А тест — это первый клиент твоего
кода.

Больше юнит-тестов, меньше всего остального

В мире тестирования есть много терминов: интеграционные,
e2e, smoke, UI, acceptance, snapshot, regression… Становится
страшно даже начинать перечислять. Но непосредственно на ка-
чество кода влияет только один вид тестов — юнит-тесты.

Почему? Потому что они:

Проверяют маленькие части кода, например функции, мето-
ды, классы.
Работают быстро.
Легко читаются и поддерживаются.
Заставляют твой код быть тестируемым, а значит — акку-
ратным и логичным.

О чём я говорю? Как это связано с разработкой?

Допустим, у нас есть endpoint, который должен вернуть фазу
Луны на определённую дату. Мы можем написать feature-тест, ко-
торый проверит, что функция, вычисляющая фазу Луны, работа-
ет корректно. В котором мы обратимся по url-адресу
/api/moon?date=2025-06-01, получим ответ и проверим, что
он соответствует ожидаемому значению.

145

public function test_returns_moon_phase_data(): void
{
 $response = $this->get('/api/moon', [
 'date' => '2025-06-01',
])
 ->assertOk()
 ->assertJsonStructure([
 'age',
 'phase',
 'distance',
 'nextNewMoon'
])
 ->json();

 [$age, $phase] = $response;

 $this->assertEquals(13.8, round($age, 1));
 $this->assertEqualsWithDelta(0.47, $phase, 0.01);
}

Это хороший тест, который проверяет, что API возвращает пра-
вильные данные для известной даты. Он проверяет, что ответ со-
держит нужные поля и что значения в них соответствуют ожидае-
мым.

Но как именно работает функция, вычисляющая фазу Луны?
Как она получает данные о Луне? Как она обрабатывает дату?
И вроде бы всё хорошо, но это обманка. Такой тест ничего не го-
ворит о логике внутри. Он — витрина. Он проверяет фасад,
но не фундамент. Он проверяет только конечный результат, это
должно быть как вишенка на торте, а не основа.

146

Мы можем написать прямо в контроллере и добавить туда с де-
сяток функций, которые будут вызывать другие функции, и в ито-
ге получим правильный ответ. Но это не лучший подход.

Вместо этого лучше сосредоточиться на написании как можно
большего числа тестов, которые проверяют поведение отдельных
компонентов в изоляции.

А для этого вам потребуется использовать объекты:

// Хорошо [✓]
public function test_moon_phase_for_known_date(): void
{
 $date = new DateTimeImmutable('2025-06-01');
 $moon = new MoonPhase($date);

 // Проверяем округлённые значения
 $this->assertEquals(13.8, round($moon->age, 1));
 $this->assertEqualsWithDelta(0.47, $moon->phase, 0.01);
}

Такой подход заставляет вас писать код, который легко прове-
рить и переиспользовать. Вы отделяете логику расчёта (в классе
MoonPhase) от внешних интерфейсов (контроллеров, команд,
CLI, API), и это делает код переносимым и модульным.

И самое важное: теперь никто не сможет просто так «вста-
вить» бизнес-логику в контроллер — просто потому что она уже
вынесена в объект, и её поведение зафиксировано тестами.

147

Тесты как средство симметрии
и архитектурной дисциплины

Тесты — это не только проверка правильности работы кода,
но и инструмент, который помогает поддерживать симметрию
и согласованность между компонентами, особенно когда они тес-
но связаны.

Например, в сервисе погоды могут быть два класса — экспор-
тёр и импортёр исторических данных:

$exporter = new WeatherHistoryExporter();
$exporter->export('/tmp/weather.zip');

$importer = new WeatherHistoryImporter();
$importer->import([
 'devices' => '/tmp/weather/devices.xml',
 'locations' => '/tmp/weather/locations.xml',
 'readings' => '/tmp/weather/readings.xml',
]);

В обычном коде вызовы этих классов часто разбросаны по раз-
ным частям приложения, и никто не замечает, что результат экс-
порта не подходит для импорта.

Если же написать тест, объединяющий эти сценарии в единый
процесс, сразу становится очевидно, что экспорт и импорт — два
конца одного процесса, и между ними должна быть полная совме-
стимость.

Такой тест заставляет думать не только о том, что делает каж-
дый отдельный компонент, но и о том, как классы на разных точ-
ках входа взаимодействуют, какой контракт между ними.

148

Это помогает сделать архитектуру цельной, логичной и под-
держиваемой.

Тесты перестают быть просто проверкой — они становятся ин-
струментом поддержания архитектурной дисциплины. Когда это
понимаешь, начинаешь писать код иначе — так, чтобы все части
системы были симметричны и идеально подходили друг к другу.

Arrange–Act–Assert (AAA)

Разделяйте тест на три логических фазы:

Arrange. Подготовьте данные, объекты и окружение.
Act. Выполните единственное действие — метод, который
тестируете.
Assert. Убедитесь, что результат совпадает с ожиданием (од-
но утверждение = одно тестовое поведение).

public function test_something(): void
{
 // Arrange: подготовка данных
 $obj = new MyClass(...);

 // Act: выполнение действия
 $result = $obj->doWork();

 // Assert: проверка результата
 $this->assertTrue($result->isSuccessful());
}

149

Если с выполнением действия и проверкой результата всё по-
нятно, то с подготовкой данных могут быть нюансы. Подготовка
данных — это главная часть теста, и она должна быть максималь-
но простой и понятной.

Например, если вы тестируете метод, который работает с ба-
зой данных, то вам нужно создать необходимые записи в базе.
Но не нужно создавать всю базу целиком, достаточно только тех
записей, которые нужны для теста.

Есть несколько способов, как организовать подготовку дан-
ных. Например, определить заранее записи в базе данных, кото-
рые бы записывались перед исполнением теста.

users:
 - id: 1
 name: Иван Иванов
 email: ivan.ivanov@example.com
 password: '$2y$10$e0NRDUE8...'
 created_at: 2024-05-01 10:00:00
 updated_at: 2024-05-01 10:00:00

 - id: 2
 name: Мария Петрова
 email: maria.petrova@example.com
 password: '$2y$10$Fjs98JDk...'
 created_at: 2024-05-02 12:30:00
 updated_at: 2024-05-02 12:30:00

150

Это заставляет нас каждый раз возвращаться к этому файлу
и обновлять его, когда мы добавляем новые поля в модель. При
написании теста нам нужно сначала создать эти записи, а потом
уже использовать их в тестах. Мы не знаем, а точно ли использу-
ется пользователь #2 в проекте или мы просто забыли удалить
его из этого файла.

Тогда в тесте будет выглядеть примерно так:

// Плохо [✗]
public function test_something(): void
{
 $user = User::find(2);
}

Кроме того, мы не видим никаких подробностей пользователя,
которого мы используем в тесте. Мы не знаем, что это за пользо-
ватель, какие у него данные и зачем он нужен.

Лучше всего, чтобы подготовка была максимально близка к те-
стируемому коду. Например, если мы тестируем метод, который
работает с пользователем, то лучше всего создать пользователя
прямо в тесте:

151

// Хорошо [✓]
public function test_something(): void
{
 $user = User::factory()
 ->withPassword('password123')
 ->create();
}

Рекомендации по организации тестов

Тесты должны зеркалировать структуру вашего приложения.
Это поможет вам быстро находить нужные тесты и понимать, что
они проверяют.

tests/
├─ Unit/
│ └─ MoonPhaseTest.php
└─ Feature/
 └─ MoonPhaseTest.php

152

Независимость тестов

При работе с тестами иногда возникает неприятная ситуация:
один тест проходит только в том случае, если он выполняется сра-
зу после другого. Если поменять порядок запуска — тест ломает-
ся. Это явный признак того, что тесты зависят друг от друга.

Надёжные тесты должны быть независимы — их результат
не должен зависеть ни от порядка выполнения, ни от состояния,
оставленного другими тестами. Другими словами, каждый тест
должен запускаться «с чистого листа», независимо от остальных.

Отличный способ обнаружить скрытые зависимости — запус-
кать тесты в случайном порядке. Если при таком запуске какой-
то тест начинает падать, значит, он опирается на предыдущие те-
сты, и с этим необходимо разобраться.

PHPUnit и Laravel поддерживают специальный флаг для слу-
чайного порядка --order-by=random

Для Laravel
php artisan test --order-by=random

Для Laravel Dusk
php artisan dusk --order-by=random

Для PHPUnit
vendor/bin/phpunit --order-by=random

Попробуйте запустить свои тесты в случайном порядке и по-
смотрите, есть ли у вас зависимые тесты.

153

Ещё лучше добавьте атрибут executionOrder в конфигураци-
онный файл, чтобы запуск тестов в случайном порядке был
по умолчанию.

<?xml version="1.0" encoding="UTF-8"?>
<phpunit
 executionOrder="random"
>

Проверяй покрытие

Тесты могут успешно выполняться и радовать зелёным цве-
том. Но есть важная деталь — ничего не забыть. Допустим,
в классе есть метод с условием:

if ($user->isPremium()) {
 // ...
}

На него уже написан тест, и он проходит. Но что, если is-
Premium() в тесте всегда возвращает false? Код внутри условия
никогда не выполняется — и вы об этом даже не узнаете.

Чтобы понять, какие строки действительно исполнялись, нуж-
на статистика покрытия. Обычно её можно получить с помощью
тех же инструментов, например:

php vendor/bin/phpunit --coverage-html coverage/

154

Открыв coverage/index.html, видно, какие строки проекта
покрыты тестами.

Зелёные — хорошо, код выполнен.
Красные — плохо, код вообще не исполнялся.
Жёлтые — частично, например, сработала только одна вет-
ка if.

Покрытие не говорит, насколько хороши тесты, но сразу пока-
зывает, где их точно нет.

Убери sleep()

Использование sleep() в тестах — это признак отсутствия
контроля над поведением системы. Вместо того чтобы управлять
процессом и делать тесты предсказуемыми, ты просто надеешь-
ся, что всё «само как-нибудь успеет». Это не разработка, а угадай-
ка.

Рассмотрим пример:

// Плохо [✗]
public function test_email_is_sent(): void
{
 $this->dispatch(new SendEmailJob($user));

 sleep(3); // надеемся, что задача обработается

 $this->assertDatabaseHas('emails', [
 'user_id' => $user->id
]);
}

155

Что здесь происходит? Вместо того чтобы изолировать логику,
использовать моки или запустить код синхронно, тест просто де-
лает паузу и надеется на удачу. Это создаёт ложное ощущение
стабильности, а на деле скрывает нестабильность и делает тесты
хрупкими.

Такие тесты зависят от внешних факторов: загрузки системы,
скорости обработки очередей, состояния базы данных. Результат
становится непредсказуемым — сегодня тест успешен, завтра па-
дает без очевидной причины. Кроме того, sleep() замедляет
весь процесс автоматической проверки, увеличивая время запус-
ка тестов.

Гораздо лучше — замокать очередь (или шину команд) и прове-
рить, что нужная задача была отправлена:

// Лучше [✓]
public function test_email_is_dispatched(): void
{
 Bus::fake();

 $this->dispatch(new SendEmailJob($user));

 Bus::assertDispatched(
 SendEmailJob::class,
 fn($job) => $job->user->id === $user->id
);
}

Такой мок не только для очередей работает. Аналогично мож-
но мокать HTTP-запросы, внешние сервисы, события — везде, где
важно проверить, что вызов произошёл.

156

Если обязательно нужно проверить побочный эффект, не жди
фиксированное время — жди по условию. Например, для асин-
хронного обновления:

// Плохо [✗]
public function test_user_status_updated(): void
{
 $this->externalApi()->newUser($user);

 sleep(5); // надеемся, что данные обработаются за это время

 $this->assertEquals(
 'processed',
 $this->externalApi()->status($user->id)
);
}

Гораздо лучше реализовать проверку с повторным опросом, ко-
торая ждёт изменения состояния в течение заданного таймаута:

// Лучше [✓]
public function test_user_status_updated(): void
{
 $this->externalApi()->newUser($user);

 $this->waitUntil(function () {
 return $this->externalApi()
 ->status($user->id) === 'processed';
 }, 10);
}

Где waitUntil — метод, который опрашивает условие с интер-
валом, пока оно не станет истинным или не выйдет таймаут.

157

>_

Играй по правилам
Программисты часто упрямы. Мы гордимся тем, что умеем аб-

страгироваться, строить свои слои и границы, моделировать слож-
ные бизнес-процессы. Мы читаем книги, впитываем принципы
SOLID, обсуждаем DDD на митапах и конференциях. Мы хотим,
чтобы наш код жил дольше, чем фреймворк, на котором он напи-
сан.

158

Это выглядит как зрелость, но в действительности это просто
страх зависимости. Мы боимся, что инструмент сделает нас ме-
нее универсальными. Что мы «завязнем» в платформе. Что
не сможем мигрировать. Что нас будут называть «разработчик
на XXX», а не просто «разработчик».

Но это — иллюзия.

Брюс Ли говорил: не бойся того, кто знает тысячу приё-
мов. Бойся того, кто отточил один приём тысячу раз.

Прими фреймворк

Когда ты добавляешь фреймворк в composer.json, ты подпи-
сываешь негласный договор. Ты не просто берёшь инструмент —
ты принимаешь архитектурный стиль, соглашения, ритм разра-
ботки. Ты говоришь: «Эта платформа решает мои задачи. Я го-
тов работать по её правилам».

Но что часто делают разработчики после этого? Начинаем со-
противляться. Гнём платформу под себя. Строим абстракции по-
верх уже готовых механизмов. Добавляем лишние слои. Изобрета-
ем велосипед, чтобы чувствовать контроль.

Вот конкретный случай. В Laravel у нас есть Eloquent ORM.
У модели User есть уже готовый интерфейс к данным:
User::query(), User::find(), User::where(...). Эти мето-
ды уже инкапсулируют доступ к данным.

159

Но некоторым разработчикам кажется, что этого недостаточ-
но. Они строят поверх этого UserRepositoryInterface, Elo-
quentUserRepository, CachedUserRepository, внедряют
их в сервисы, пишут фабрики. Почему?

Потому что где-то они прочитали, что «работа с базой данных
должна быть скрыта за интерфейсом». Но этот принцип вырван
из контекста. Он применим в условиях, где инфраструктура слож-
на и разнообразна: файловые БД, распределённые хранилища, пе-
реключаемые бэкенды. Laravel же, как и в большинстве современ-
ных фреймворков, сам фреймворк уже является мощным адапте-
ром.

В результате мы не получаем ни гибкости, ни производитель-
ности. Только архитектурный шум.

Принять фреймворк — значит использовать его силу, вырази-
тельность и экосистему. Это не поражение. Это зрелость. Играй
по правилам — и ты удивишься, насколько всё может быть про-
сто.

Не смешивай

В один момент тебе покажется, что ты стал умнее фреймвор-
ков. Что можешь выжать максимум из каждого. Взять миграции
из CakePHP, FormRequest из Laravel, консольные команды из Sym-
fony, что-нибудь из Yii. Ведь ты же архитектор. Ты знаешь, что де-
лаешь. Правда?

Нет. Ты просто устроил себе проводной ад.

160

С виду это кажется гибкостью. Мол, ты не привязываешься
ни к чему. Но на практике — ты просто собрал чемодан, полный
переходников. Всё греется, шумит, не влезает в рюкзак, требует
постоянной настройки.

Любой фреймворк — это не просто набор библиотек. Это дого-
вор на стиль разработки. Он решает проблемы целиком. У него
есть ритм, философия, экосистема. Когда ты от него откусываешь
кусками, это уже не Symfony, не Laravel и не Yii. Это что-то, что
не будет полноценно поддерживаться ни сообществом, ни доку-
ментацией, ни будущими разработчиками.

Мне не нравится

Важно понимать, что не все разработчики сразу открыты к ис-
пользованию новых инструментов или технологий. Навязывание
определённого фреймворка или подхода без учёта мнения и опы-
та команды часто вызывает сопротивление, снижение мотивации
и даже саботаж.

Если вы столкнулись с сопротивлением со стороны вашей ко-
манды, необходимо провести открытый и честный разговор, что-
бы по возможности уладить их опасения. Поиск совета у опытно-
го профессионала может быть полезным для нахождения взаимо-
приемлемого решения.

Но если ты чувствуешь, что инструмент тебе не близок, — это
нормально. Не пытайся «переделать» его под себя. Не стоит быть
как наивная девушка, надеющаяся, что парень изменится —
и всё станет как в сказке. Так не работает. Это не значит, что
ты плохой разработчик. И не значит, что инструмент плохой. Про-
сто вы не совпали.

161

Слишком часто мы боимся это признать — и начинаем «улуч-
шать». Переписывать, извращать, подгонять. Вместо этого — про-
сто не используй его вовсе. Выбирай те инструменты, которые со-
ответствуют твоей философии и задачам. Не строй CQRS там, где
у тебя обычный CRUD. Не впихивай микросервисы в монолит.
Не применяй DDD, если у тебя нет сложной предметной области.

Ты либо принимаешь инструмент целиком и используешь его
силу. Либо честно отказываешься — и идёшь другим путём. Поло-
винчатое принятие — не компромисс, а архитектурное лицеме-
рие. Борьба с инструментом — всегда путь в хаос.

162

>_

Не отказывайтесь
от будущего

Часто можно услышать от разработчиков фразу «пока работа-
ет — не трогай». Это звучит как здравый смысл. Но это в корне
неверно. Очень плохая практика, которая является на самом де-
ле самообманом. Как бы аккуратно ни был написан код — он не
живёт в вакууме. Фреймворки развиваются, стандарты обновля-
ются, экосистема не стоит на месте.

163

Игнорировать это — значит сознательно идти к деградации:
медленно, мучительно и дорого. И с каждым днём этот выбор всё
сильнее бьёт по эффективности команды.

Каждое «потом» становится «никогда». А каждое «не сей-
час» — будущим блокером. И чем дальше откладываешь — тем
больнее возвращаться.

Давайте разберёмся, почему откладывание обновлений — это
отказ от будущего.

Временные решения всегда становятся
постоянными

Разработчики вынуждены тратить время на создание времен-
ных решений и костылей для работы с устаревшими компонента-
ми, вместо использования стандартных средств и функционально-
сти, доступных в новых версиях.

Пример:

Разработчики, использующие Laravel 5.0, разрабатывали
собственную проверку, чтобы клиент мог просматри-
вать только свои заказы в интернет-магазине. Однако
менее чем через полгода в версии 5.1 были представлены
Policies, ставшие стандартом. Вместо обновления как
можно скорее, увеличение кодовой базы лишь увеличива-
ло время на последующее устранение технического дол-
га.

164

Усложнение процесса обновления

Большие разрывы в обновлениях создают снежный ком, кото-
рый требует значительных усилий и ресурсов для обновления
проекта. Это может привести к тому, что если вы захотите обно-
виться, придётся потратить на это несколько месяцев без внедре-
ния какого-либо нового функционала.

Пример:

Разработчики «Яндекс. Еда» пропустили три мажорных
релиза, и полное обновление заняло целый год. За время
накопления технического долга поддержка фреймворка,
пакетов и самого PHP изменилась.

Актуальность — это и про найм тоже

Использование поддерживаемых версий также облегчает про-
цесс найма новых разработчиков. Большинство опытных разра-
ботчиков предпочитают работать с современными и актуальными
технологиями. Кроме того, знание того, что проект использует
поддерживаемые версии, может быть важным моментом для кан-
дидатов при принятии решения о присоединении к команде. Это
также позволяет обеспечить более плавный процесс адаптации
новых членов команды, так как они уже знакомы с особенностя-
ми работы с актуальными версиями.

165

>_

Второй пилот —
не капитан

В начале книги уже было отмечено: код читают гораздо чаще,
чем пишут. Сегодня у разработчика появился второй пилот —
только теперь он не сидит рядом, а встроен прямо в редактор.
ChatGPT, Copilot и другие LLM-инструменты. Быстрые, дружелюб-
ные, полезные. Но не стоит обманываться: это всё ещё второй пи-
лот, а не капитан.

166

Обычно код не меняют просто так. Чаще всего причина — баг
или новая функциональность, и задача для инструмента формули-
руется примерно так:

«Выступи в роли X. Иногда этот код выбрасывает исклю-
чение XXX. Исправь, пожалуйста».

Но именно в таких формулировках и кроется проблема.

Если передать ему метод на 800 строк, полных противоречий,
логических дыр и нелепых зависимостей — не надейтесь, что
он сделает из этого конфетку. Он будет продолжать. Механиче-
ски, без разбора. Потому что его задача — продолжить твой
стиль, а не исправить твой хаос. Старое правило GIGO —
Garbage In, Garbage Out. никуда не делось.

Рассмотрим простой пример: функция, которая записывает
email в базу и отправляет приветственное письмо. Попросим вто-
рого пилота добавить логирование:

167

// >_ Добавь логирование адресов почты

function store()
{
 $email = $_POST['email'];

 $conn = new mysqli('localhost', 'user', 'pass', 'db');
 $conn->query("INSERT INTO users (email) VALUES ('$email')");

 mail($email, 'Hi', 'Welcome!');

+ file_put_contents(
+ 'log.txt',
+ "User $email\n",
+ FILE_APPEND
+);

 echo 'Done';
}

Он чертовски хорошо выполнил свою задачу, но проблема
не в его работе, а в том, что переданный код выглядит очень пло-
хо, потому что в нём:

Нет возврата осмысленного результата.
SQL-инъекция (строка вставляется напрямую).
Нет обработки ошибок.

Если разработчик передаёт мусор — метод, который и швец,
и жнец, и на дуде игрец — не стоит удивляться, что в ответ полу-
чит ещё и трубача.
LLM не откажет. Он скажет: «Да, командир!» — и продолжит ра-
боту.

168

На сайтах вроде Stack Overflow вопросы задают и решают жи-
вые люди. Часто можно встретить ответы, отмеченные как «реше-
ние», но при этом получившие минусы — в комментариях объяс-
няют: да, это работает, но в долгосрочной перспективе приведёт
к серьёзным проблемам.

«Второй пилот» — помощник другого типа.

Он не будет указывать на архитектурные проблемы или спор-
ные решения, пока его об этом не попросите. Его задача — помо-
гать вам как можно быстрее двигаться к результату, решать биз-
нес-проблемы здесь и сейчас. Но и большинство разработчиков
настроены точно так же: задача должна быть закрыта, сроки —
вчера, и мало кто будет тратить время, чтобы просить помощни-
ка подумать над более выразительными именами переменных, ар-
хитектурой или стилем.

Поэтому пилот продолжает ехать по плохой дороге. А это са-
мое страшное — мы просто раздуваем хаос. И не просто так,
а ещё и автоматизируем его рост.

Вот почему важно начать с хорошей базы: чистого кода, понят-
ной архитектуры, простых методов и имён.

Контекст

У LLM-инструментов есть ограничение, про которое редко го-
ворят — окно контекста. Оно невидимо, его нельзя контролиро-
вать напрямую. Но оно всегда рядом. И иногда критически важ-
ные части твоей системы просто выпадают из внимания модели.

169

Появляется асимметрия. Поверхность кажется правильной,
но под капотом — несовместимость.

Мы уже несколько раз в книге говорили о симметрии, но да-
вайте повторим. И посмотрим на небольшой пример импортера
исторических данных о погоде:

$importer = new WeatherHistoryImporter();
$importer->import([
 'devices' => '/tmp/weather/devices.xml',
 'locations' => '/tmp/weather/locations.xml',
 'readings' => '/tmp/weather/readings.xml',
]);

Его мог бы написать любой, и выглядит вполне разумно.
Но этот класс — часть процесса импорта/экспорта. LLM может
не знать о том, что класс экспорта выдаёт не набор XML-струк-
тур, а zip-архив:

$exporter = new WeatherHistoryExporter();
$exporter->export('/tmp/weather.zip');

И мы снова получим асимметрию, хотя между экспортом и им-
портом должна быть полная совместимость. Результат экспорта
по идее должен сразу и без искажений становиться аргументом
для импорта — чтобы данные шли по замкнутому кругу без по-
терь и несоответствий.

И что? Они просто не стыкуются. LLM не «ошибся». Он просто
не увидел целиком весь процесс.

170

Вот почему важно проверять границы. Убедиться, что один
этап действительно продолжает другой. Что данные не просто
«появились», а дошли по цепочке. Что код — не набор изолиро-
ванных кусочков, а единое движение данных.

Именно контекст определяет смысл. И если ты его теряешь —
модель его точно не найдёт.

Другой пример такой асимметрии — если мы попросим LLM,
например, внести проверку на уникальность в базе данных:

class TokenService
{
 public function generate(): string
 {
 return bin2hex(random_bytes(16));
 }
}

171

В ответ получишь:

public function generate(): string
{
 do {
 $token = bin2hex(random_bytes(16));
 } while ($this->canTokenExists($token));

 return $token;
}

private function canTokenExists(string $token): bool
{
 return DB::table('tokens')
 ->where('value', $token)
 ->exists();
}

Он так же отлично справился с задачей. Но вот что он не зна-
ет: в другом месте системы у тебя уже есть TokenRepository,
и именно он отвечает за сохранение, валидацию, поиск, всё, что
связано с токенами. И теперь у тебя два источника правды: один
в TokenService, второй в TokenRepository.

Почему это произошло? Всё по той же причине — потому что
пилот не видит всей картины. Он сфокусирован на том куске, ко-
торый ему показали. И всё остальное — выпадает.

Контекст — это не «удобно держать в голове». Это то, без чего
невозможно принимать архитектурные решения. LLM не знает,
как устроена твоя система. Он просто не видит границ. А разра-
ботчик — видит. Или, по крайней мере, должен видеть.

172

Не твой код

Есть и ещё одна неочевидная причина, по которой работа вто-
рого пилота может вызывать раздражение или разочарование, да-
же если он выполнил задачу точно.

Для очень многих разработчиков код — это не просто способ
что-то реализовать. Это форма мышления, контроля, развития.
Это способ выразить себя через структуру, стиль, архитектурные
решения.

Когда множество программного кода рождается не в процессе
размышлений, а просто появляется по запросу — остаётся ощу-
щение отчуждённости. Да, задача решена. Но путь к решению
пройден не тобой. Ты не выбирал между подходами, не ошибал-
ся, не искал компромисс. А значит — не чувствуется и результат.

Сгенерированный код может выглядеть и работать правильно,
но разработчик становится не уверен в его деталях, не понимает
всех нюансов и не чувствует связи с ним. Он становится чем-то
внешним — как инструмент, который решил задачу, но не пере-
дал опыт.

В результате со временем может очень сильно снизиться моти-
вация и вовлечённость разработчика. Чтобы такого не допускать,
нужно не просто «принимать» результат от LLM, а делать его
«своим».

Понимать, откуда он взялся.
Переписывать под собственный стиль.
Встраивать в архитектуру осознанно.

173

AI — это помощник. Он может ускорить работу. Но он не заме-
нит твой выбор, твой стиль, твоё мышление.

Второй пилот не заменит твоё мышление — он просто помога-
ет писать. А хороший код начинается с тебя!

174

>_

Послесловие
Эта книга показала: аккуратный, читаемый код — это не недо-

стижимый идеал, а повседневная реальность. Это та работа, кото-
рую можно и нужно выполнять каждый день.

В реальных проектах побеждает не самый «умный» код, а са-
мый понятный. Не самый модный подход, а самый предсказуе-
мый. Не тот, что поражает архитектурой, а тот, что не оставляет
вопросов.

Если после прочтения вы начали обращать внимание на име-
на переменных и длину методов — значит, всё было не зря. На-
смотренность и чувство стиля придут быстрее, чем вы думаете.

	Contents
	Пре­ди­сло­вие
	Всё на­чи­на­ет­ся с README
	Ве­ли­кий мо­но­лит
	Код как сред­ство ком­му­ни­ка­ции
	Фор­ма­ти­ро­ва­ние
	Код дол­жен ды­шать
	Име­но­ва­ние
	Ма­ги­че­ские зна­че­ния
	Раз­мер име­ет зна­че­ние
	Без лиш­них дви­же­ний
	Ран­ний вы­ход
	Управ­ля­ю­щие кон­струк­ции
	Ар­гу­мен­ты
	Об­ра­бот­ка оши­бок
	Ком­мен­та­рии
	Не бой­ся уда­лять код
	Те­сты
	Иг­рай по пра­ви­лам
	Не от­ка­зы­вай­тесь от бу­ду­ще­го
	Вто­рой пи­лот — не ка­пи­тан
	По­сле­сло­вие

