<?php
declare(strict_types=1);
namespace Brick\Math\Internal\Calculator;
use Brick\Math\Internal\Calculator;
/**
* Calculator implementation using only native PHP code.
*
* @internal
*
* @psalm-immutable
*/
class NativeCalculator extends Calculator
{
/**
* The max number of digits the platform can natively add, subtract, multiply or divide without overflow.
* For multiplication, this represents the max sum of the lengths of both operands.
*
* For addition, it is assumed that an extra digit can hold a carry (1) without overflowing.
* Example: 32-bit: max number 1,999,999,999 (9 digits + carry)
* 64-bit: max number 1,999,999,999,999,999,999 (18 digits + carry)
*
* @var int
*/
private $maxDigits;
/**
* Class constructor.
*
* @codeCoverageIgnore
*/
public function __construct()
{
switch (PHP_INT_SIZE) {
case 4:
$this->maxDigits = 9;
break;
case 8:
$this->maxDigits = 18;
break;
default:
throw new \RuntimeException('The platform is not 32-bit or 64-bit as expected.');
}
}
/**
* {@inheritdoc}
*/
public function add(string $a, string $b) : string
{
/**
* @psalm-var numeric-string $a
* @psalm-var numeric-string $b
*/
$result = $a + $b;
if (is_int($result)) {
return (string) $result;
}
if ($a === '0') {
return $b;
}
if ($b === '0') {
return $a;
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
$result = $aNeg === $bNeg ? $this->doAdd($aDig, $bDig) : $this->doSub($aDig, $bDig);
if ($aNeg) {
$result = $this->neg($result);
}
return $result;
}
/**
* {@inheritdoc}
*/
public function sub(string $a, string $b) : string
{
return $this->add($a, $this->neg($b));
}
/**
* {@inheritdoc}
*/
public function mul(string $a, string $b) : string
{
/**
* @psalm-var numeric-string $a
* @psalm-var numeric-string $b
*/
$result = $a * $b;
if (is_int($result)) {
return (string) $result;
}
if ($a === '0' || $b === '0') {
return '0';
}
if ($a === '1') {
return $b;
}
if ($b === '1') {
return $a;
}
if ($a === '-1') {
return $this->neg($b);
}
if ($b === '-1') {
return $this->neg($a);
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
$result = $this->doMul($aDig, $bDig);
if ($aNeg !== $bNeg) {
$result = $this->neg($result);
}
return $result;
}
/**
* {@inheritdoc}
*/
public function divQ(string $a, string $b) : string
{
return $this->divQR($a, $b)[0];
}
/**
* {@inheritdoc}
*/
public function divR(string $a, string $b): string
{
return $this->divQR($a, $b)[1];
}
/**
* {@inheritdoc}
*/
public function divQR(string $a, string $b) : array
{
if ($a === '0') {
return ['0', '0'];
}
if ($a === $b) {
return ['1', '0'];
}
if ($b === '1') {
return [$a, '0'];
}
if ($b === '-1') {
return [$this->neg($a), '0'];
}
/** @psalm-var numeric-string $a */
$na = $a * 1; // cast to number
if (is_int($na)) {
/** @psalm-var numeric-string $b */
$nb = $b * 1;
if (is_int($nb)) {
// the only division that may overflow is PHP_INT_MIN / -1,
// which cannot happen here as we've already handled a divisor of -1 above.
$r = $na % $nb;
$q = ($na - $r) / $nb;
assert(is_int($q));
return [
(string) $q,
(string) $r
];
}
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
[$q, $r] = $this->doDiv($aDig, $bDig);
if ($aNeg !== $bNeg) {
$q = $this->neg($q);
}
if ($aNeg) {
$r = $this->neg($r);
}
return [$q, $r];
}
/**
* {@inheritdoc}
*/
public function pow(string $a, int $e) : string
{
if ($e === 0) {
return '1';
}
if ($e === 1) {
return $a;
}
$odd = $e % 2;
$e -= $odd;
$aa = $this->mul($a, $a);
/** @psalm-suppress PossiblyInvalidArgument We're sure that $e / 2 is an int now */
$result = $this->pow($aa, $e / 2);
if ($odd === 1) {
$result = $this->mul($result, $a);
}
return $result;
}
/**
* Algorithm from: https://www.geeksforgeeks.org/modular-exponentiation-power-in-modular-arithmetic/
*
* {@inheritdoc}
*/
public function modPow(string $base, string $exp, string $mod) : string
{
// special case: the algorithm below fails with 0 power 0 mod 1 (returns 1 instead of 0)
if ($base === '0' && $exp === '0' && $mod === '1') {
return '0';
}
// special case: the algorithm below fails with power 0 mod 1 (returns 1 instead of 0)
if ($exp === '0' && $mod === '1') {
return '0';
}
$x = $base;
$res = '1';
// numbers are positive, so we can use remainder instead of modulo
$x = $this->divR($x, $mod);
while ($exp !== '0') {
if (in_array($exp[-1], ['1', '3', '5', '7', '9'])) { // odd
$res = $this->divR($this->mul($res, $x), $mod);
}
$exp = $this->divQ($exp, '2');
$x = $this->divR($this->mul($x, $x), $mod);
}
return $res;
}
/**
* Adapted from https://cp-algorithms.com/num_methods/roots_newton.html
*
* {@inheritDoc}
*/
public function sqrt(string $n) : string
{
if ($n === '0') {
return '0';
}
// initial approximation
$x = \str_repeat('9', \intdiv(\strlen($n), 2) ?: 1);
$decreased = false;
for (;;) {
$nx = $this->divQ($this->add($x, $this->divQ($n, $x)), '2');
if ($x === $nx || $this->cmp($nx, $x) > 0 && $decreased) {
break;
}
$decreased = $this->cmp($nx, $x) < 0;
$x = $nx;
}
return $x;
}
/**
* Performs the addition of two non-signed large integers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return string
*/
private function doAdd(string $a, string $b) : string
{
[$a, $b, $length] = $this->pad($a, $b);
$carry = 0;
$result = '';
for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) {
$blockLength = $this->maxDigits;
if ($i < 0) {
$blockLength += $i;
/** @psalm-suppress LoopInvalidation */
$i = 0;
}
/** @psalm-var numeric-string $blockA */
$blockA = \substr($a, $i, $blockLength);
/** @psalm-var numeric-string $blockB */
$blockB = \substr($b, $i, $blockLength);
$sum = (string) ($blockA + $blockB + $carry);
$sumLength = \strlen($sum);
if ($sumLength > $blockLength) {
$sum = \substr($sum, 1);
$carry = 1;
} else {
if ($sumLength < $blockLength) {
$sum = \str_repeat('0', $blockLength - $sumLength) . $sum;
}
$carry = 0;
}
$result = $sum . $result;
if ($i === 0) {
break;
}
}
if ($carry === 1) {
$result = '1' . $result;
}
return $result;
}
/**
* Performs the subtraction of two non-signed large integers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return string
*/
private function doSub(string $a, string $b) : string
{
if ($a === $b) {
return '0';
}
// Ensure that we always subtract to a positive result: biggest minus smallest.
$cmp = $this->doCmp($a, $b);
$invert = ($cmp === -1);
if ($invert) {
$c = $a;
$a = $b;
$b = $c;
}
[$a, $b, $length] = $this->pad($a, $b);
$carry = 0;
$result = '';
$complement = 10 ** $this->maxDigits;
for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) {
$blockLength = $this->maxDigits;
if ($i < 0) {
$blockLength += $i;
/** @psalm-suppress LoopInvalidation */
$i = 0;
}
/** @psalm-var numeric-string $blockA */
$blockA = \substr($a, $i, $blockLength);
/** @psalm-var numeric-string $blockB */
$blockB = \substr($b, $i, $blockLength);
$sum = $blockA - $blockB - $carry;
if ($sum < 0) {
$sum += $complement;
$carry = 1;
} else {
$carry = 0;
}
$sum = (string) $sum;
$sumLength = \strlen($sum);
if ($sumLength < $blockLength) {
$sum = \str_repeat('0', $blockLength - $sumLength) . $sum;
}
$result = $sum . $result;
if ($i === 0) {
break;
}
}
// Carry cannot be 1 when the loop ends, as a > b
assert($carry === 0);
$result = \ltrim($result, '0');
if ($invert) {
$result = $this->neg($result);
}
return $result;
}
/**
* Performs the multiplication of two non-signed large integers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return string
*/
private function doMul(string $a, string $b) : string
{
$x = \strlen($a);
$y = \strlen($b);
$maxDigits = \intdiv($this->maxDigits, 2);
$complement = 10 ** $maxDigits;
$result = '0';
for ($i = $x - $maxDigits;; $i -= $maxDigits) {
$blockALength = $maxDigits;
if ($i < 0) {
$blockALength += $i;
/** @psalm-suppress LoopInvalidation */
$i = 0;
}
$blockA = (int) \substr($a, $i, $blockALength);
$line = '';
$carry = 0;
for ($j = $y - $maxDigits;; $j -= $maxDigits) {
$blockBLength = $maxDigits;
if ($j < 0) {
$blockBLength += $j;
/** @psalm-suppress LoopInvalidation */
$j = 0;
}
$blockB = (int) \substr($b, $j, $blockBLength);
$mul = $blockA * $blockB + $carry;
$value = $mul % $complement;
$carry = ($mul - $value) / $complement;
$value = (string) $value;
$value = \str_pad($value, $maxDigits, '0', STR_PAD_LEFT);
$line = $value . $line;
if ($j === 0) {
break;
}
}
if ($carry !== 0) {
$line = $carry . $line;
}
$line = \ltrim($line, '0');
if ($line !== '') {
$line .= \str_repeat('0', $x - $blockALength - $i);
$result = $this->add($result, $line);
}
if ($i === 0) {
break;
}
}
return $result;
}
/**
* Performs the division of two non-signed large integers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return string[] The quotient and remainder.
*/
private function doDiv(string $a, string $b) : array
{
$cmp = $this->doCmp($a, $b);
if ($cmp === -1) {
return ['0', $a];
}
$x = \strlen($a);
$y = \strlen($b);
// we now know that a >= b && x >= y
$q = '0'; // quotient
$r = $a; // remainder
$z = $y; // focus length, always $y or $y+1
for (;;) {
$focus = \substr($a, 0, $z);
$cmp = $this->doCmp($focus, $b);
if ($cmp === -1) {
if ($z === $x) { // remainder < dividend
break;
}
$z++;
}
$zeros = \str_repeat('0', $x - $z);
$q = $this->add($q, '1' . $zeros);
$a = $this->sub($a, $b . $zeros);
$r = $a;
if ($r === '0') { // remainder == 0
break;
}
$x = \strlen($a);
if ($x < $y) { // remainder < dividend
break;
}
$z = $y;
}
return [$q, $r];
}
/**
* Compares two non-signed large numbers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return int [-1, 0, 1]
*/
private function doCmp(string $a, string $b) : int
{
$x = \strlen($a);
$y = \strlen($b);
$cmp = $x <=> $y;
if ($cmp !== 0) {
return $cmp;
}
return \strcmp($a, $b) <=> 0; // enforce [-1, 0, 1]
}
/**
* Pads the left of one of the given numbers with zeros if necessary to make both numbers the same length.
*
* The numbers must only consist of digits, without leading minus sign.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return array{string, string, int}
*/
private function pad(string $a, string $b) : array
{
$x = \strlen($a);
$y = \strlen($b);
if ($x > $y) {
$b = \str_repeat('0', $x - $y) . $b;
return [$a, $b, $x];
}
if ($x < $y) {
$a = \str_repeat('0', $y - $x) . $a;
return [$a, $b, $y];
}
return [$a, $b, $x];
}
}